681 research outputs found

    Degenerations of LeBrun twistor spaces

    Full text link
    We investigate various limits of the twistor spaces associated to the self-dual metrics on n CP ^2, the connected sum of the complex projective planes, constructed by C. LeBrun. In particular, we explicitly present the following 3 kinds of degenerations whose limits of the metrics are: (a) LeBrun metrics on (n-1) CP ^2$, (b) (Another) LeBrun metrics on the total space of the line bundle O(-n) over CP ^1 (c) The hyper-Kaehler metrics on the small resolution of rational double points of type A_{n-1}, constructed by Gibbons and Hawking.Comment: 21 pages, 7 figures. V2: A new section added at the end of the article. V3: Reference slightly update

    Cholesterol- and actin-centered view of the plasma membrane: updating the Singer–Nicolson fluid mosaic model to commemorate its 50th anniversary

    Get PDF
    Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer–Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model

    Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus

    Get PDF
    Bacterial diversity associated with corals has been studied extensively, however, localization of bacterial associations within the holobiont is still poorly resolved. Here we provide novel insight into the localization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. In total, 318 and 308 CAMAs were characterized via histological and fluorescent in situ hybridization (FISH) approaches respectively, and shown to be distributed extensively throughout coral tissues collected from five sites in Japan and Australia. The densities of CAMAs within the tissues were negatively correlated with the distance from the coastline (i.e. lowest densities at offshore sites). CAMAs were randomly distributed across the six coral tissue regions investigated. Within each CAMA, bacterial cells had similar morphological characteristics, but bacterial morphologies varied among CAMAs, with at least five distinct types identified. Identifying the location of microorganisms associated with the coral host is a prerequisite for understanding their contributions to fitness. Localization of tissue-specific communities housed within CAMAs is particularly important, as these communities are potentially important contributors to vital metabolic functions of the holobiont

    Mechanism of Crosstalk between the LSD1 Demethylase and HDAC1 Deacetylase in the CoREST Complex.

    Get PDF
    The transcriptional corepressor complex CoREST is one of seven histone deacetylase complexes that regulate the genome through controlling chromatin acetylation. The CoREST complex is unique in containing both histone demethylase and deacetylase enzymes, LSD1 and HDAC1, held together by the RCOR1 scaffold protein. To date, it has been assumed that the enzymes function independently within the complex. Now, we report the assembly of the ternary complex. Using both structural and functional studies, we show that the activity of the two enzymes is closely coupled and that the complex can exist in at least two distinct states with different kinetics. Electron microscopy of the complex reveals a bi-lobed structure with LSD1 and HDAC1 enzymes at opposite ends of the complex. The structure of CoREST in complex with a nucleosome reveals a mode of chromatin engagement that contrasts with previous models

    Exchange Symmetry and Multipartite Entanglement

    Full text link
    Entanglement of multipartite systems is studied based on exchange symmetry under the permutation group S_N. With the observation that symmetric property under the exchange of two constituent states and their separability are intimately linked, we show that anti-symmetric (fermionic) states are necessarily globally entangled, while symmetric (bosonic) states are either globally entangled or fully separable and possess essentially identical states in all the constituent systems. It is also shown that there cannot exist a fully separable state which is orthogonal to all symmetric states, and that full separability of states does not survive under total symmetrization unless the states are originally symmetric. Besides, anyonic states permitted under the braid group B_N should also be globally entangled. Our results reveal that exchange symmetry is actually sufficient for pure states to become globally entangled or fully separable.Comment: 12 pages, appendix adde

    Sliding Singlet Mechanism Revisited

    Full text link
    We show that the unification of the doublet Higgs in the standard model (SM) and the Higgs to break the grand unified theory (GUT) group stabilizes the sliding singlet mechanism which can solve the doublet-triplet (DT) splitting problem. And we generalize this attractive mechanism to apply it to many unified scenarios. In this paper, we try to build various concrete E_6 unified models by using the generalized sliding singlet mechanism.Comment: 13 page

    Ectopic thyroid in an adrenal mass: a case report

    Get PDF
    BACKGROUND: It is difficult to explain ectopic thyroid beneath the diaphragm because during the development the thyroid descends from the tongue to the anterior of the trachea. A few cases of ectopic lesions have been reported in the literature for abdominal organs including the adrenal glands, but the mechanism by which the thyroid components migrate into the abdomen has been poorly understood. CASE PRESENTATION: A 54-year-old woman was diagnosed as having an adrenal mass. Laparoscopic adrenalectomy was carried out. Microscopically, the mass was composed of normal adrenal and ectopic thyroid tissues. CONCLUSION: We herein describe the fourth case reported of ectopic thyroid in the adrenal gland

    Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clamping ability.

    Get PDF
    Nitric oxide (NO) regulates neuronal function and thus is critical for tuning neuronal communication. Mechanisms by which NO modulates protein function and interaction include posttranslational modifications (PTMs) such as S-nitrosylation. Importantly, cross signaling between S-nitrosylation and prenylation can have major regulatory potential. However, the exact protein targets and resulting changes in function remain elusive. Here, we interrogated the role of NO-dependent PTMs and farnesylation in synaptic transmission. We found that NO compromises synaptic function at the Drosophila neuromuscular junction (NMJ) in a cGMP-independent manner. NO suppressed release and reduced the size of available vesicle pools, which was reversed by glutathione (GSH) and occluded by genetic up-regulation of GSH-generating and de-nitrosylating glutamate-cysteine-ligase and S-nitroso-glutathione reductase activities. Enhanced nitrergic activity led to S-nitrosylation of the fusion-clamp protein complexin (cpx) and altered its membrane association and interactions with active zone (AZ) and soluble N-ethyl-maleimide-sensitive fusion protein Attachment Protein Receptor (SNARE) proteins. Furthermore, genetic and pharmacological suppression of farnesylation and a nitrosylation mimetic mutant of cpx induced identical physiological and localization phenotypes as caused by NO. Together, our data provide evidence for a novel physiological nitrergic molecular switch involving S-nitrosylation, which reversibly suppresses farnesylation and thereby enhances the net-clamping function of cpx. These data illustrate a new mechanistic signaling pathway by which regulation of farnesylation can fine-tune synaptic release

    Cerebral air embolism as a complication of peptic ulcer in the gastric tube: case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reported incidence of ulcer formation in the gastric tube in esophageal replacement is rare.</p> <p>Case Presentation</p> <p>This is the first report of a case of cerebral air embolism as a result of spontaneous perforation of an ulcer in the constructed gastric tube into the pulmonary vein during post-operative follow-up in a patient with esophageal cancer.</p> <p>Conclusions</p> <p>Cerebral air embolism is a rare complication of penetrating gastric ulcer, but should be considered in patients with a history of esophagectomy with gastric conduit that present with acute neurologic findings.</p
    corecore