3,974 research outputs found
Fundamental limitations to high-precision tests of the universality of free fall by dropping atoms
Tests of the universality of free fall and the weak equivalence principle
probe the foundations of General Relativity. Evidence of a violation may lead
to the discovery of a new force. The best torsion balance experiments have
ruled it out to 10^-13. Cold-atom drop tests have reached 10^-7 and promise to
do 7 to 10 orders of magnitude better, on the ground or in space. They are
limited by the random shot noise, which depends on the number N of atoms in the
clouds. As mass-dropping experiments in the non-uniform gravitational field of
Earth, they are sensitive to the initial conditions. Random accelerations due
to initial condition errors of the clouds are designed to be at the same level
as shot noise, so that they can be reduced with the number of drops along with
it. This sets the requirements for the initial position and velocity spreads of
the clouds with given N. In the STE-QUEST space mission proposal aiming at
2x10^-15 they must be about a factor 8 above Heisenberg's principle limit, and
the integration time required to reduce both errors is 3 years, with a mission
duration of 5 years. Instead, offset errors at release between different atom
clouds are systematic and give rise to a systematic effect which mimics a
violation. Such offsets must be demonstrated to be as small as required in all
drops, must be small by design and must be measured. For STE-QUEST to meet its
goal they must be several orders of magnitude smaller than the size of each
individual cloud, which in its turn must be at most 8 times larger than the
uncertainty principle limit. Even if all technical problems are solved and the
clouds are released with negligible systematic errors, still they must be
measured. Then, Heisenberg's principle dictates that the measurement lasts as
long as the experiment and the systematic nature of the effect requires many
measurements for it to be ruled out as a source of violation
Relevance of the weak equivalence principle and experiments to test it: lessons from the past and improvements expected in space
Tests of the Weak Equivalence Principle (WEP) probe the foundations of
physics. Ever since Galileo in the early 1600s, WEP tests have attracted some
of the best experimentalists of any time. Progress has come in bursts, each
stimulated by the introduction of a new technique: the torsion balance, signal
modulation by Earth rotation, the rotating torsion balance. Tests for various
materials in the field of the Earth and the Sun have found no violation to the
level of about 1 part in 1e13. A different technique, Lunar Laser Ranging
(LLR), has reached comparable precision. Today, both laboratory tests and LLR
have reached a point when improving by a factor of 10 is extremely hard. The
promise of another quantum leap in precision rests on experiments performed in
low Earth orbit. The Microscope satellite, launched in April 2016 and currently
taking data, aims to test WEP in the field of Earth to 1e-15, a 100-fold
improvement possible thanks to a driving signal in orbit almost 500 times
stronger than for torsion balances on ground. The `Galileo Galilei' (GG)
experiment, by combining the advantages of space with those of the rotating
torsion balance, aims at a WEP test 100 times more precise than Microscope, to
1e-17. A quantitative comparison of the key issues in the two experiments is
presented, along with recent experimental measurements relevant for GG. Early
results from Microscope, reported at a conference in March 2017, show
measurement performance close to the expectations and confirm the key role of
rotation with the advantage (unique to space) of rotating the whole spacecraft.
Any non-null result from Microscope would be a major discovery and call for
urgent confirmation; with 100 times better precision GG could settle the matter
and provide a deeper probe of the foundations of physics.Comment: To appear: Physics Letters A, special issue in memory of Professor
Vladimir Braginsky, 2017. Available online:
http://dx.doi.org/10.1016/j.physleta.2017.09.02
A Disk--Jet interaction model for the X--Ray Variability in Microquasars
We propose a simple dynamical model that may account for the observed
spectral and temporal properties of GRS 1915+105 and XTE J1550-5634. The model
is based on the assumption that a fraction of the radiation emitted by a hot
spot lying on the accreting disk is dynamically Comptonized by the relativistic
jet that typically accompanies the microquasar phenomenon. We show that
scattering by the jet produces a detectable modulation of the observed flux. In
particular, we found that the phase lag between hard and soft photons depends
on the radial position of the hot spot and, if the angle between the jet and
the line of sight is sufficiently large, the lags of the fundamental and its
harmonics may be either positive or negative.Comment: 14 pages, 4 figures, accepted for publication in ApJ Part
Edge wrinkling in elastically supported pre-stressed incompressible isotropic plates
The equations governing the appearance of flexural static perturbations at the edge of a semi-infinite thin elastic isotropic plate, subjected to a state of homogeneous bi-axial pre-stress, are derived and solved. The plate is incompressible and supported by a Winkler elastic foundation with, possibly, wavenumber dependence. Small perturbations superposed onto the homogeneous state of pre-stress, within the three-dimensional elasticity theory, are considered. A series expansion of the plate kinematics in the plate thickness provides a consistent expression for the second variation of the potential energy, whose minimization gives the plate governing equations. Consistency considerations supplement a constraint on the scaling of the pre-stress so that the classical Kirchhoff-Love linear theory of pre-stretched elastic plates is retrieved. Moreover, a scaling constraint for the foundation stiffness is also introduced. Edge wrinkling is investigated and compared with body wrinkling. We find that the former always precedes the latter in a state of uni-axial pre-stretch, regardless of the foundation stiffness. By contrast, a general bi-axial pre-stretch state may favour body wrinkling for moderate foundation stiffness. Wavenumber dependence significantly alters the predicted behaviour. The results may be especially relevant to modelling soft biological materials, such as skin or tissues, or stretchable organic thin-films, embedded in a compliant elastic matrix
Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: which strains act as health players?
Introduction: Non-alcoholic fatty liver disease (NAFLD), considered the leading cause of chronic liver disease in children, can often progress from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). It is clear that obesity is one of the main risk factors involved in NAFLD pathogenesis, even if specific mechanisms have yet to be elucidated. We investigated the distribution of intestinal bifidobacteria and lactobacilli in the stools of four groups of children: obese, obese with NAFL, obese with NASH, and healthy, age-matched controls (CTRLs). Material and methods: Sixty-one obese, NAFL and NASH children and 54 CTRLs were enrolled in the study. Anthropometric and metabolic parameters were measured for all subjects. All children with suspected NASH underwent liver biopsy. Bifidobacteria and lactobacilli were analysed in children’s faecal samples, during a broader, 16S rRNA-based pyrosequencing analysis of the gut microbiome. Results: Three Bifidobacterium spp. (Bifidobacterium longum, Bifidobacterium bifidum, and Bifidobacterium adolescentis) and five Lactobacillus spp. (L. zeae, L. vaginalis, L. brevis, L. ruminis, and L. mucosae) frequently recurred in metagenomic analyses. Lactobacillus spp. increased in NAFL, NASH, or obese children compared to CTRLs. Particularly, L. mucosae was significantly higher in obese (p = 0.02426), NAFLD (p = 0.01313) and NASH (p = 0.01079) than in CTRLs. In contrast, Bifidobacterium spp. were more abundant in CTRLs, suggesting a protective and beneficial role of these microorganisms against the aforementioned diseases. Conclusions: Bifidobacteria seem to have a protective role against the development of NAFLD and obesity, highlighting their possible use in developing novel, targeted and effective probiotics
Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes
Recent theoretical work suggests that violation of the Equivalence Principle
might be revealed in a measurement of the fractional differential acceleration
between two test bodies -of different composition, falling in the
gravitational field of a source mass- if the measurement is made to the level
of or better. This being within the reach of ground based
experiments, gives them a new impetus. However, while slowly rotating torsion
balances in ground laboratories are close to reaching this level, only an
experiment performed in low orbit around the Earth is likely to provide a much
better accuracy.
We report on the progress made with the "Galileo Galilei on the Ground" (GGG)
experiment, which aims to compete with torsion balances using an instrument
design also capable of being converted into a much higher sensitivity space
test.
In the present and following paper (Part I and Part II), we demonstrate that
the dynamical response of the GGG differential accelerometer set into
supercritical rotation -in particular its normal modes (Part I) and rejection
of common mode effects (Part II)- can be predicted by means of a simple but
effective model that embodies all the relevant physics. Analytical solutions
are obtained under special limits, which provide the theoretical understanding.
A simulation environment is set up, obtaining quantitative agreement with the
available experimental data on the frequencies of the normal modes, and on the
whirling behavior. This is a needed and reliable tool for controlling and
separating perturbative effects from the expected signal, as well as for
planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan
16, 2006. 16 2-column pages, 9 figure
The GALILEO GALILEI small-satellite mission with FEEP thrusters (GG)
The Equivalence Principle, formulated by Einstein generalizing Galileo’s and Newton’s work, is a fundamental principle of modern physics. As such it should be tested as accurately as possible. Its most direct consequence, namely the Universality of Free Fall, can be tested in space, in a low Earth orbit, the crucial advantage being that the driving signal is about three orders of magnitude stronger
than on Earth. GALILEO GALILEI (GG) is a small space mission designed for such a high-accuracy test. At the time of print, GG has been selected by ASI (Agenzia Spaziale Italiana) as a candidate for the next small Italian mission. Ground tests of the proposed apparatus now indicate that an accuracy of 1 part in 1017 is within the reach of this small mission
Low inflation and monetary policy in the euro area
Inflation in the euro area has been falling since mid-2013, turned negative at the end of 2014 and remained below target thereafter. This paper employs a Bayesian VAR to quantify the contribution of a set of structural shocks, identified by means of sign restrictions, to inflation and economic activity. Shocks to oil supply do not tell the full story about the disinflation that started in 2013, as both aggregate demand and monetary policy shocks also played an important role. The lower bound to policy rates turned the European Central Bank (ECB) conventional monetary policy de facto contractionary. A country analysis confirms that the negative effects of oil supply and monetary policy shocks on inflation was widespread, albeit with different intensity across countries. The ECB unconventional measures since 2014 contributed to raising inflation and economic activity in all the countries. All in all, our analysis confirms the appropriateness of the ECB asset purchase programme
The chaotic behavior of the black hole system GRS 1915+105
A modified non-linear time series analysis technique, which computes the
correlation dimension , is used to analyze the X-ray light curves of the
black hole system GRS 1915+105 in all twelve temporal classes. For four of
these temporal classes saturates to which indicates that
the underlying dynamical mechanism is a low dimensional chaotic system. Of the
other eight classes, three show stochastic behavior while five show deviation
from randomness. The light curves for four classes which depict chaotic
behavior have the smallest ratio of the expected Poisson noise to the
variability () while those for the three classes which depict
stochastic behavior is the highest (). This suggests that the temporal
behavior of the black hole system is governed by a low dimensional chaotic
system, whose nature is detectable only when the Poisson fluctuations are much
smaller than the variability.Comment: Accepted for publication in Astrophysical Journa
- …
