22 research outputs found

    Cu(II) biosorption by living biofilms:Isothermal, chemical, physical and biological evaluation

    Get PDF
    Dissolved copper in stormwater runoff is a significant environmental problem. Biosorption of dissolved metals using microorganisms is known as a green, low-cost and efficient method. However, the role of live biological agents in the remediation of dissolved copper in Sustainable Drainage (SuDS) has not been reported. In this study, the effect of pH, initial concentration and temperature, on bacteria in different stages of biofilm development on a geotextile, along with Cu(II) removal efficiencies, were evaluated. Maximum Cu(II) removal efficiency (92%) was observed at pH 6. By decreasing the pH from 6 to 2, a log 5 reduction in bacteria was observed and Carboxyl groups transformed from -COO- to –COOH. The maximum biosorption capacity (119 mg g−1) was detected on day 1 of biofilm development, however, maximum removal efficiency (97%) was measured on day 21 of biofilm incubation. Extracellular Polymeric Substance (EPS) showed a better protection of CFUs in more mature biofilms (day 21) with less than 0.1 log decrease when exposed to 200 mL−1 Cu(II), whereas, biofilm on day 1 of incubation showed a 2 log reduction in CFUs number. Thermodynamic studies showed that the maximum Cu(II) biosorption capacity of biofilms, incubated for 7 days (117 mg g−1) occurred at 35 °C. Thermodynamic and kinetic modelling of data revealed that a physical, feasible, spontaneous and exothermic process controlled the biosorption, with a diffusion process observed in external layers of the biofilm, fitting a pseudo-second order model. Equilibrium data modelling and high R2 values of Langmuir model indicated that the biosorption took place by a monolayer on the living biofilm surface in all stages of biofilm development

    Urban Gardens’ Potential to Improve Stormwater Management:A Comparative Analysis among Urban Soils in Sorocaba, São Paulo, Brazil

    Get PDF
    Permeable surfaces are increasingly rare in urban centers, but they have the utmost importance for stormwater infiltration. In this context, green spaces are key to reducing problems caused by runoff. This work aimed to evaluate the physical characteristics of the soil used for agroecological gardening, in comparison with parks, wasteland, and riparian forest in Sorocaba, São Paulo, Brazil. During the one-year data collection, urban gardens were superior to other areas in hydraulic conductivity (35.8 mm h−1), humidity (25.8%), and soil penetration resistance (1.21 MPa). On the other hand, the riparian forest showed signs of soil degradation, with low water infiltration rates (121.9 mm h−1) and humidity (14.4%). These findings highlight the importance of better soil management solutions to avoid compaction, such as the protection and conservation of riparian forests. Furthermore, the encouragement of urban gardens and parks with multiple uses can be an option for the enhancement of stormwater management in cities, since this practice has the potential to improve the physical characteristics of urban soils and provide several ecosystem services
    corecore