19 research outputs found

    Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Get PDF
    We report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt) nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition

    The Primarily Undergraduate Nanomaterials Cooperative: A New Model for Supporting Collaborative Research at Small Institutions on a National Scale

    Get PDF
    The Primarily Undergraduate Nanomaterials Cooperative (PUNC) is an organization for research-active faculty studying nanomaterials at Primarily Undergraduate Institutions (PUIs), where undergraduate teaching and research go hand-in-hand. In this perspective, we outline the differences in maintaining an active research group at a PUI compared to an R1 institution. We also discuss the work of PUNC, which focuses on community building, instrument sharing, and facilitating new collaborations. Currently consisting of 37 members from across the United States, PUNC has created an online community consisting of its Web site (nanocooperative.org), a weekly online summer group meeting program for faculty and students, and a Discord server for informal conversations. Additionally, in-person symposia at ACS conferences and PUNC-specific conferences are planned for the future. It is our hope that in the years to come PUNC will be seen as a model organization for community building and research support at primarily undergraduate institutions

    Understanding the potential impact of different drug properties on SARS-CoV-2 transmission and disease burden : a modelling analysis

    Get PDF
    Q1Q1Background The unprecedented public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. Methods and Findings develop a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care to explore the potential public-health impact of a range of different potential therapeutics, under a range of different scenarios varying: i) healthcare capacity, ii) epidemic trajectories; and iii) drug efficacy in the absence of supportive care. In each case, the outcome of interest was the number of COVID-19 deaths averted in scenarios with the therapeutic compared to scenarios without. We find the impact of drugs like dexamethasone (which are delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in highincome countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics. Conclusions There is a global asymmetry in who is likely to benefit from advances in the treatment of COVID-19 to date, which have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics that can feasibly be delivered to those earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priorityRevista Internacional - Indexad

    Growth Characteristics and Optical Properties of Core/Alloy Nanoparticles Fabricated via the Layer-by-Layer Hydrothermal Route

    No full text
    The layer-by-layer formation of core/alloy nanoparticles is described. Using presynthesized gold nanoparticle cores, Au<sub><i>x</i></sub>Ag<sub>1‑<i>x</i></sub> alloy shells were deposited and annealed with subnanometer precision using a microwave irradiation (MWI) mediated hydrothermal processing method. The alloy composition, thickness, and nanoparticle morphology governed the surface plasmon resonance characteristics of the particles, as well as growth characteristics. The mechanism for alloy deposition, annealing, and interdiffusion was explored using two gold precursors, [AuBr<sub>4</sub>]<sup>−</sup> and [AuCl<sub>4</sub>]<sup>−</sup>, and two hydrothermal temperatures (120, 160 °C). Findings indicate that use of [AuCl<sub>4</sub>]<sup>−</sup> results in significant galvanic displacement, leading to nonuniform alloy formation and phase segregation at low annealing temperatures, which leads to loss of morphology control at intermediate compositions (<i>x</i> ≈ 0.25–0.75). In contrast, use of [AuBr<sub>4</sub>]<sup>−</sup> results in alloy shells with low galvanic interactions, leading to optimum alloy distribution and high fidelity control of alloy-shell thickness that, in combination with higher hydrothermal processing temperatures, leads to uniform and monodisperse core/alloy microstructure across all compositions. The alloy deposition and core/alloy nanoparticle growth was followed in situ by monitoring the change in surface plasmon resonance (SPR) signatures by UV–vis, which were unique to alloy shell thickness, as well as composition, and morphology. The interfacial alloy composition was probed by modeling the SPR with discrete dipole approximation, the results of which suggest the final alloy shells are Au-rich compared to the feed ratios, owing in large part to both galvanic displacements as well as core-to-shell alloy interdiffusion
    corecore