207 research outputs found

    Analysis of small ruminants’ pastoral management practices as risk factors of peste des petits ruminants (PPR) spread in Turkana District, Kenya

    Get PDF
    Peste des petits ruminants (PPR) is an emerging viral disease spreading throughout Kenya and East Africa causing major losses in the small stock. This study is an attempt to evaluate small stock management practices in Turkana pastoral system, Kenya as predictors of PPR outbreaks. Information on the social practices and the occurrence of PPR outbreaks was obtained by participatory techniques. The small stock management practices, evaluated as factors, in a previous study were simultaneously analyzed with seasons and administrative divisions as the independent risk factors for the presence or absence of PPR outbreaks in 142 Adakars (villages) as the dependent variable. Analyses were carried out for the years 2009 and 2010 combined as one data set and considered as longitudinal repeated data. In the analyses, the presence or absence of PPR outbreaks was the dependent variable. Data were further analyzed separately disaggregated by season where the presence or absence of PPR outbreaks in a season was considered as the dependent variable. All analyses utilized multivariable logistical regression analyses. In the longitudinal analysis, season was the only significant factor associated with PPR outbreak. Disaggregating the data by season revealed that certain seasonal-specific livestock management activities increased the risk of reporting PPR outbreaks: (1) sharing water sources leading to social aggregation of young stock in one point (Factor 3) (odds ratio (OR) = 2.0) in season 2 (wet season) of 2009; (2) sick dams left to nurse their young kids/lambs (Factor 7) (OR=1.62) in the same season in 2010. The finding of diverse risk factors in the same seasons across years suggests temporal heterogeneity in the distribution and occurrence of the determinants of PPR in the Turkana ecosystem. The study discusses the implications of these findings on disease control

    Epidemiology of Coxiella burnetii infection in Africa: a OneHealth systematic review

    Get PDF
    Background: Q fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.<p></p> Methods/Principal Findings: We searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.<p></p> Conclusions/Significance: C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.<p></p&gt

    Effects of Single and Integrated Water, Sanitation, Handwashing, and Nutrition Interventions on Child Soil-Transmitted Helminth and Giardia infections: A Cluster-Randomized Controlled Trial in Rural Kenya

    Get PDF
    Helminth and protozoan infections affect more than 1 billion children globally. Improving water quality, sanitation, handwashing, and nutrition could be more sustainable control strategies for parasite infections than mass drug administration, while providing other quality of life benefits

    Cluster-randomised controlled trials of individual and combined water, sanitation, hygiene and nutritional interventions in rural Bangladesh and Kenya: the WASH Benefits study design and rationale.

    Get PDF
    INTRODUCTION: Enteric infections are common during the first years of life in low-income countries and contribute to growth faltering with long-term impairment of health and development. Water quality, sanitation, handwashing and nutritional interventions can independently reduce enteric infections and growth faltering. There is little evidence that directly compares the effects of these individual and combined interventions on diarrhoea and growth when delivered to infants and young children. The objective of the WASH Benefits study is to help fill this knowledge gap. METHODS AND ANALYSIS: WASH Benefits includes two cluster-randomised trials to assess improvements in water quality, sanitation, handwashing and child nutrition-alone and in combination-to rural households with pregnant women in Kenya and Bangladesh. Geographically matched clusters (groups of household compounds in Bangladesh and villages in Kenya) will be randomised to one of six intervention arms or control. Intervention arms include water quality, sanitation, handwashing, nutrition, combined water+sanitation+handwashing (WSH) and WSH+nutrition. The studies will enrol newborn children (N=5760 in Bangladesh and N=8000 in Kenya) and measure outcomes at 12 and 24 months after intervention delivery. Primary outcomes include child length-for-age Z-scores and caregiver-reported diarrhoea. Secondary outcomes include stunting prevalence, markers of environmental enteropathy and child development scores (verbal, motor and personal/social). We will estimate unadjusted and adjusted intention-to-treat effects using semiparametric estimators and permutation tests. ETHICS AND DISSEMINATION: Study protocols have been reviewed and approved by human subjects review boards at the University of California, Berkeley, Stanford University, the International Centre for Diarrheal Disease Research, Bangladesh, the Kenya Medical Research Institute, and Innovations for Poverty Action. Independent data safety monitoring boards in each country oversee the trials. This study is funded by a grant from the Bill & Melinda Gates Foundation to the University of California, Berkeley. REGISTRATION: Trial registration identifiers (http://www.clinicaltrials.gov): NCT01590095 (Bangladesh), NCT01704105 (Kenya)

    Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study.

    Get PDF
    BACKGROUND: Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial. METHODS: Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes. RESULTS: During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes. CONCLUSION: PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum. TRIAL REGISTRATION: ClinicalTrials.gov NCT00666380

    Effects of water quality, sanitation, handwashing, and nutritional interventions on diarrhoea and child growth in rural Kenya: a cluster-randomised controlled trial.

    Get PDF
    BACKGROUND: Poor nutrition and exposure to faecal contamination are associated with diarrhoea and growth faltering, both of which have long-term consequences for child health. We aimed to assess whether water, sanitation, handwashing, and nutrition interventions reduced diarrhoea or growth faltering. METHODS: The WASH Benefits cluster-randomised trial enrolled pregnant women from villages in rural Kenya and evaluated outcomes at 1 year and 2 years of follow-up. Geographically-adjacent clusters were block-randomised to active control (household visits to measure mid-upper-arm circumference), passive control (data collection only), or compound-level interventions including household visits to promote target behaviours: drinking chlorinated water (water); safe sanitation consisting of disposing faeces in an improved latrine (sanitation); handwashing with soap (handwashing); combined water, sanitation, and handwashing; counselling on appropriate maternal, infant, and young child feeding plus small-quantity lipid-based nutrient supplements from 6-24 months (nutrition); and combined water, sanitation, handwashing, and nutrition. Primary outcomes were caregiver-reported diarrhoea in the past 7 days and length-for-age Z score at year 2 in index children born to the enrolled pregnant women. Masking was not possible for data collection, but analyses were masked. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01704105. FINDINGS: Between Nov 27, 2012, and May 21, 2014, 8246 women in 702 clusters were enrolled and randomly assigned an intervention or control group. 1919 women were assigned to the active control group; 938 to passive control; 904 to water; 892 to sanitation; 917 to handwashing; 912 to combined water, sanitation, and handwashing; 843 to nutrition; and 921 to combined water, sanitation, handwashing, and nutrition. Data on diarrhoea at year 1 or year 2 were available for 6494 children and data on length-for-age Z score in year 2 were available for 6583 children (86% of living children were measured at year 2). Adherence indicators for sanitation, handwashing, and nutrition were more than 70% at year 1, handwashing fell to less than 25% at year 2, and for water was less than 45% at year 1 and less than 25% at year 2; combined groups were comparable to single groups. None of the interventions reduced diarrhoea prevalence compared with the active control. Compared with active control (length-for-age Z score -1·54) children in nutrition and combined water, sanitation, handwashing, and nutrition were taller by year 2 (mean difference 0·13 [95% CI 0·01-0·25] in the nutrition group; 0·16 [0·05-0·27] in the combined water, sanitation, handwashing, and nutrition group). The individual water, sanitation, and handwashing groups, and combined water, sanitation, and handwashing group had no effect on linear growth. INTERPRETATION: Behaviour change messaging combined with technologically simple interventions such as water treatment, household sanitation upgrades from unimproved to improved latrines, and handwashing stations did not reduce childhood diarrhoea or improve growth, even when adherence was at least as high as has been achieved by other programmes. Counselling and supplementation in the nutrition group and combined water, sanitation, handwashing, and nutrition interventions led to small growth benefits, but there was no advantage to integrating water, sanitation, and handwashing with nutrition. The interventions might have been more efficacious with higher adherence or in an environment with lower baseline sanitation coverage, especially in this context of high diarrhoea prevalence. FUNDING: Bill & Melinda Gates Foundation, United States Agency for International Development
    corecore