163 research outputs found
Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73644/1/j.1365-2699.2007.01814.x.pd
Fission widths of hot nuclei from Langevin dynamics
Fission dynamics of excited nuclei is studied in the framework of Langevin
equation. The one body wall-and-window friction is used as the dissipative
force in the Langevin equation. In addition to the usual wall formula friction,
the chaos weighted wall formula developed earlier to account for
nonintegrability of single-particle motion within the nuclear volume is also
considered here. The fission rate calculated with the chaos weighted wall
formula is found to be faster by about a factor of two than that obtained with
the usual wall friction. The systematic dependence of fission width on
temperature and spin of the fissioning nucleus is investigated and a simple
parametric form of fission width is obtained.Comment: RevTex, 12 pages including 9 Postscript figure
The damping width of giant dipole resonances of cold and hot nuclei: a macroscopic model
A phenomenological macroscopic model of the Giant Dipole Resonance (GDR)
damping width of cold- and hot-nuclei with ground-state spherical and
near-spherical shapes is developed. The model is based on a generalized Fermi
Liquid model which takes into account the nuclear surface dynamics. The
temperature dependence of the GDR damping width is accounted for in terms of
surface- and volume-components. Parameter-free expressions for the damping
width and the effective deformation are obtained. The model is validated with
GDR measurements of the following nuclides, K, Ca, Sc,
Cu, Sn,Eu, Hg, and Pb, and is
compared with the predictions of other models.Comment: 10 pages, 5 figure
Recommended from our members
Dynamics of fission and fusion with applications to the formation of superheavy nuclei
Recommended from our members
Prompt fission neutron spectra and average prompt neutron multiplicities
We present a new method for calculating the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity anti nu/sub p/ as functions of the fissioning nucleus and its excitation energy. The method is based on standard nuclear evaporation theory and takes into account (1) the motion of the fission fragments, (2) the distribution of fission-fragment residual nuclear temperature, (3) the energy dependence of the cross section sigma/sub c/ for the inverse process of compound-nucleus formation, and (4) the possibility of multiple-chance fission. We use a triangular distribution in residual nuclear temperature based on the Fermi-gas model. This leads to closed expressions for N(E) and anti nu/sub p/ when sigma/sub c/ is assumed constant and readily computed quadratures when the energy dependence of sigma/sub c/ is determined from an optical model. Neutron spectra and average multiplicities calculated with an energy-dependent cross section agree well with experimental data for the neutron-induced fission of /sup 235/U and the spontaneous fission of /sup 252/Cf. For the latter case, there are some significant inconsistencies between the experimental spectra that need to be resolved. 29 references
- …