2 research outputs found

    Rhenium and yttrium ions as antimicrobial agents against multidrug resistant Klebsiella pneumoniae and Acinetobacter baumannii biofilms

    Get PDF
    © 2019 The Authors. Letters in Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology. Antimicrobial resistance presents major global concerns to patient health. In this study, metal ions of molybdenum, rhenium, yttrium and thallium were tested against bacteria in planktonic and biofilm form using one strain of Klebsiella pneumoniae and Acinetobacter baumannii. The antimicrobial efficacy of the metal ions was evaluated against the planktonic bacterial strains using minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations, whilst the efficacy of the metal ions against biofilms was tested using a crystal violet biofilm assay. Live Dead staining was used to visualize the antimicrobial activity elicited by the metal ions on the bacterial cell. The results showed that higher concentrations of the metals were required to inhibit the growth of biofilms (72·9 mg l −1 to 416·7 mg l −1 ), in comparison to their planktonic counterparts. MICs of the metal ions (<46·9 mg l −1 ) (planktonic cells) did not affect biofilm formation. Overall, rhenium and yttrium were effective antimicrobial agents. Molybdenum demonstrated the greatest level of biotoxicity. When taking into account these results and the known toxicity of thallium, it is possible that rhenium or yttrium ions could be developed as effective biocidal formulations in order to prevent transmission in healthcare environments. Significance and Impact of the Study: The metal ions, molybdenum, rhenium, thallium and yttrium were tested against both Klebsiella pneumoniae and Acinetobacter baumannii in planktonic and biofilm forms. This research demonstrated that all the metal ions may be effective antimicrobial agents. However, molybdenum induced high levels of cytotoxicity, whilst, there was no significant difference in the toxicity of the other metal ions tested. When considering the results for the antimicrobial efficacy and biotoxicity of the metal ions, in conjunction with the known toxicity of thallium in certain chemical compositions, it was concluded that overall rhenium or yttrium ions may be effective antimicrobial agents, one potential application may be utilizing these metal ions in hospital surface cleaning formulations

    Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process

    No full text
    The toxic leachate generated from landfills is becoming a major nuisance to the environment and has vital role in groundwater contamination. This study evaluated the potential of zero valent aluminium (ZVAl) based advanced oxidation processes (AOPs) for stabilized landfill leachate treatment. Hydrogen peroxide (HP) and persulfate (PS) were used to generate additional radicals in aerated ZVAl acid process. ZVAl-acid system achieved 83% COD removal efficiency under optimized conditions such as acid washing time of 20 min, ZVAl dose of 10 g L�1 at initial pH 1.5. The highest exclusion efficiencies in terms of TOC, COD as well as color were 83.52%, 96% and 63.71% respectively in treatment systems showing the following order: ZVAl/H+ /Air/HP/PS > ZVAl/H+ /Air/PS > ZVAl/H+ /Air/HP > ZVAl/H+ /Air > ZVAl/H+ . The involvement of other metals such as Fe and Cu in the process has been found. The reusability study revealed that ZVAl powder can be effectively used up to three cycles. The 28.48 mg/l of Al3+ residue was observed in this process which has to be removed before discharge of effluent. The study indicated that the ZVAl based AOPs is stable and active for the degradation of organic pollutants present in landfill leachate and a promising solution except for the aluminium discharge which has to be given special care
    corecore