336 research outputs found

    Predicting loneliness with polygenic scores of social, psychological and psychiatric traits

    Get PDF
    Loneliness is a heritable trait that accompanies multiple disorders. The association between loneliness and mental health indices may partly be due to inherited biological factors. We constructed polygenic scores for 27 traits related to behavior, cognition and mental health and tested their prediction for self-reported loneliness in a population-based sample of 8798 Dutch individuals. Polygenic scores for major depressive disorder (MDD), schizophrenia and bipolar disorder were significantly associated with loneliness. Of the Big Five personality dimensions, polygenic scores for neuroticism and conscientiousness also significantly predicted loneliness, as did the polygenic scores for subjective well-being, tiredness and self-rated health. When including all polygenic scores simultaneously into one model, only 2 major depression polygenic scores remained as significant predictors of loneliness. When controlling only for these 2 MDD polygenic scores, only neuroticism and schizophrenia remain significant. The total variation explained by all polygenic scores collectively was 1.7%. The association between the propensity to feel lonely and the susceptibility to psychiatric disorders thus pointed to a shared genetic etiology. The predictive power of polygenic scores will increase as the power of the genome-wide association studies on which they are based increases and may lead to clinically useful polygenic scores that can inform on the genetic predisposition to loneliness and mental health

    Assessment of bidirectional relationships between physical activity and depression among adults a 2-sample Mendelian randomization study

    Get PDF
    IMPORTANCE Increasing evidence shows that physical activity is associated with reduced risk for depression, pointing to a potential modifiable target for prevention. However, the causality and direction of this association are not clear; physical activity may protect against depression, and/or depression may result in decreased physical activity. OBJECTIVE To examine bidirectional relationships between physical activity and depression using a genetically informed method for assessing potential causal inference. DESIGN, SETTING, AND PARTICIPANTS This 2-sample mendelian randomization (MR) used independent top genetic variants associated with 2 physical activity phenotypes-self-reported (n = 377 234) and objective accelerometer-based (n = 91 084)-and with major depressive disorder (MDD) (n = 143 265) as genetic instruments from the largest available, nonoverlapping genome-wide association studies (GWAS). GWAS were previously conducted in diverse observational cohorts, including the UK Biobank (for physical activity) and participating studies in the Psychiatric Genomics Consortium (for MDD) among adults of European ancestry. Mendelian randomization estimates from each genetic instrument were combined using inverse variance weighted meta-analysis, with alternate methods (eg, weighted median, MR Egger, MR-Pleiotropy Residual Sum and Outlier [PRESSO]) and multiple sensitivity analyses to assess horizontal pleiotropy and remove outliers. Data were analyzed from May 10 through July 31, 2018. MAIN OUTCOMES AND MEASURES MDD and physical activity. RESULTS GWAS summary data were available for a combined sample size of 611 583 adult participants. Mendelian randomization evidence suggested a protective relationship between accelerometer-based activity and MDD (odds ratio [OR], 0.74 for MDD per 1-SD increase in mean acceleration; 95% CI, 0.59-0.92; P =.006). In contrast, there was no statistically significant relationship between MDD and accelerometer-based activity (β = −0.08 in mean acceleration per MDD vs control status; 95% CI, −0.47 to 0.32; P =.70). Furthermore, there was no significant relationship between self-reported activity and MDD (OR, 1.28 for MDD per 1-SD increase in metabolic-equivalent minutes of reported moderate-to-vigorous activity; 95% CI, 0.57-3.37; P =.48), or between MDD and self-reported activity (β = 0.02 per MDD in standardized metabolic-equivalent minutes of reported moderate-to-vigorous activity per MDD vs control status; 95% CI, −0.008 to 0.05; P =.15). CONCLUSIONS AND RELEVANCE Using genetic instruments identified from large-scale GWAS, robust evidence supports a protective relationship between objectively assessed-but not self-reported-physical activity and the risk for MDD. Findings point to the importance of objective measurement of physical activity in epidemiologic studies of mental health and support the hypothesis that enhancing physical activity may be an effective prevention strategy for depression

    Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32330 subjects from the International Cannabis Consortium

    Get PDF
    Cannabis is the most widely produced and consumed illicit psychoactive substance worldwide. Occasional cannabis use can progress to frequent use, abuse and dependence with all known adverse physical, psychological and social consequences. Individual differences in cannabis initiation are heritable (40-48%). The International Cannabis Consortium was established with the aim to identify genetic risk variants of cannabis use. We conducted a meta-analysis of genome-wide association data of 13 cohorts (N=32 330) and four replication samples (N=5627). In addition, we performed a gene-based test of association, estimated single-nucleotide polymorphism (SNP)-based heritability and explored the genetic correlation between lifetime cannabis use and cigarette use using LD score regression. No individual SNPs reached genome-wide significance. Nonetheless, gene-based tests identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Previous studies reported associations of NCAM1 with cigarette smoking and other substance use, and those of CADM2 with body mass index, processing speed and autism disorders, which are phenotypes previously reported to be associated with cannabis use. Furthermore, we showed that, combined across the genome, all common SNPs explained 13-20% (P<0.001) of the liability of lifetime cannabis use. Finally, there was a strong genetic correlation (rg=0.83; P=1.85 × 10(-8)) between lifetime cannabis use and lifetime cigarette smoking implying that the SNP effect sizes of the two traits are highly correlated. This is the largest meta-analysis of cannabis GWA studies to date, revealing important new insights into the genetic pathways of lifetime cannabis use. Future functional studies should explore the impact of the identified genes on the biological mechanisms of cannabis use

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    Get PDF
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and 52 organic acids. Our study reveals significant differences in h2 Metabolite-hits among different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of unsaturation have higher h2 Metabolite-hits estimates than phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of common genetic variants for metabolite levels, and elucidates the genetic architecture of metabolite classes
    • …
    corecore