83 research outputs found

    Proteomics approaches to fibrotic disorders

    Get PDF
    This review provides an introduction to mass spectrometry based proteomics and discusses several proteomics approaches that are relevant in understanding the pathophysiology of fibrotic disorders and the approaches that are frequently used in biomarker discovery

    In vitro evaluation of a novel bioreactor based on an integral oxygenator and a spirally wound nonwoven polyester matrix for hepatocyte culture as small aggregates

    Get PDF
    BACKGROUND/AIMS: The development of custom-made bioreactors for use as a bioartificial liver (BAL) is considered to be one of the last challenges on the road to successful temporary extracorporeal liver support therapy. We devised a novel bioreactor (patent pending) which allows individual perfusion of high density cultured hepatocytes with low diffusional gradients, thereby more closely resembling the conditions in the intact liver lobuli. METHODS: The bioreactor consists of a spirally wound nonwoven polyester matrix, i.e. a sheet-shaped, three-dimensional framework for hepatocyte immobilization and aggregation, and of integrated hydrophobic hollow-fiber membranes for decentralized oxygen supply and CO2 removal. Medium (plasma in vivo) was perfused through the extrafiber space and therefore in direct hepatocyte contact. Various parameters were assessed over a period of 4 days including galactose elimination, urea synthesis, lidocaine elimination, lactate/pyruvate ratios, amino acid metabolism, pH, the last day being reserved exclusively for determination of protein secretion. RESULTS: Microscopic examination of the hepatocytes revealed cytoarchitectural characteristics as found in vivo. The biochemical performance of the bioreactor remained stable over the investigated period. The urea synthesizing capacity of hepatocytes in the bioreactor was twice that of hepatocytes in monolayer cultures. Flow sensitive magnetic resonance imaging (MRI) revealed that the bioreactor construction ensured medium flow through all parts of the device irrespective of its size. CONCLUSIONS: The novel bioreactor showed encouraging efficiency. The device is easy to manufacture with scale-up to the liver mass required for possible short-term support of patients in hepatic failur

    Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity

    No full text
    Protein–carbohydrate interactions mediated by lectins have been recognized as key components of innate immunity in vertebrates and invertebrates, not only for recognition of potential pathogens, but also for participating in downstream effector functions, such as their agglutination, immobilization, and complement-mediated opsonization and killing. More recently, lectins have been identified as critical regulators of mammalian adaptive immune responses. Fish are endowed with virtually all components of the mammalian adaptive immunity, and are equipped with a complex lectin repertoire. In this review, we discuss evidence suggesting that: (a) lectin repertoires in teleost fish are highly diversified, and include not only representatives of the lectin families described in mammals, but also members of lectin families described for the first time in fish species; (b) the tissue-specific expression and localization of the diverse lectin repertoires and their molecular partners is consistent with their distinct biological roles in innate and adaptive immunity; (c) although some lectins may bind endogenous ligands, others bind sugars on the surface of potential pathogens; (d) in addition to pathogen recognition and opsonization, some lectins display additional effector roles, such as complement activation and regulation of immune functions; (e) some lectins that recognize exogenous ligands mediate processes unrelated to immunity: they may act as anti-freeze proteins or prevent polyspermia during fertilization

    N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli.

    No full text
    N-linked protein glycosylation is the most abundant posttranslation modification of secretory proteins in eukaryotes. A wide range of functions are attributed to glycan structures covalently linked to asparagine residues within the asparagine-X-serine/threonine consensus sequence (Asn-Xaa-Ser/Thr). We found an N-linked glycosylation system in the bacterium Campylobacter jejuni and demonstrate that a functional N-linked glycosylation pathway could be transferred into Escherichia coli. Although the bacterial N-glycan differs structurally from its eukaryotic counterparts, the cloning of a universal N-linked glycosylation cassette in E. coli opens up the possibility of engineering permutations of recombinant glycan structures for research and industrial applications
    corecore