27 research outputs found
Measuring populations to improve vaccination coverage
In low-income settings, vaccination campaigns supplement routine immunization but often fail to achieve coverage goals due to uncertainty about target population size and distribution. Accurate, updated estimates of target populations are rare but critical; short-term fluctuations can greatly impact population size and susceptibility. We use satellite imagery to quantify population fluctuations and the coverage achieved by a measles outbreak response vaccination campaign in urban Niger and compare campaign estimates to measurements from a post-campaign survey. Vaccine coverage was overestimated because the campaign underestimated resident numbers and seasonal migration further increased the target population. We combine satellite-derived measurements of fluctuations in population distribution with high-resolution measles case reports to develop a dynamic model that illustrates the potential improvement in vaccination campaign coverage if planners account for predictable population fluctuations. Satellite imagery can improve retrospective estimates of vaccination campaign impact and future campaign planning by synchronizing interventions with predictable population fluxes
Environmental variation across multiple spatial scales and temporal lags influences Hendra virus spillover
1. Pathogens can spill over and infect new host species by overcoming a series of ecological and biological barriers. Hendra virus (HeV) circulates in Australian flying foxes and provides a data-rich study system for identifying environmental drivers underlying spillover events. The frequency of spillover events to horses has varied interannually since the virus was first discovered in 1994. These observations suggest that HeV spillover events are driven, in part, by environmental factors, including loss of flying fox habitat and climate variability.
2. We explicitly examine the impact of environmental variation on the risk of HeV spillover at three spatial scales relevant to this system. We use a dataset of 60 spillover events and boosted regression tree methods to identify environmental features (including concurrent and lagged temperature, rainfall, vegetation indices, land cover, and climate indices) at three spatial scales (1-km, 20-km, 100-km radii) associated with horse contacts and reservoir species ecology.
3. We find that temperature, local (1-km radius) human population density, and landscape (100-km radius) forest cover and pasture are the most influential environmental features associated with HeV spillover risk. By including multiple spatial scales and temporal lags in environmental features, we can more accurately quantify risk across space and time than with models that use a single scale. For example, high quality vegetation at the local scale and within a foraging radius (20-km) in the concurrent month and previous years, combined with poorer quality vegetation at the landscape scale in the concurrent month increase risk of HeV spillover. These and other environmental associations likely influence the dynamic foraging behaviour of reservoir flying foxes and drive contacts that facilitate spillover into horse populations.
4. Synthesis and application: Current management of HeV spillover focuses on local-scale interventions – primarily through vaccination and detection of infected horses. Our study finds that HeV spillover risk is also driven by environmental changes over much larger scales and demonstrates management practices would benefit from incorporating landscape interventions alongside local interventions
The dynamics of measles in sub-Saharan Africa.
Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission-generating high amplitude epidemics-within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur
Measles on the Edge: Coastal Heterogeneities and Infection Dynamics
Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted ‘edge effect’ by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of ‘edge effects’ on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models
Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral Coexistence and Latitudinal Gradients
Despite a mass of research on the epidemiology of seasonal influenza, overall patterns of infection have not been fully described on broad geographic scales and for specific types and subtypes of the influenza virus. Here we provide a descriptive analysis of laboratory-confirmed influenza surveillance data by type and subtype (A/H3N2, A/H1N1, and B) for 19 temperate countries in the Northern and Southern hemispheres from 1997 to 2005, compiled from a public database maintained by WHO (FluNet). Key findings include patterns of large scale co-occurrence of influenza type A and B, interhemispheric synchrony for subtype A/H3N2, and latitudinal gradients in epidemic timing for type A. These findings highlight the need for more countries to conduct year-round viral surveillance and report reliable incidence data at the type and subtype level, especially in the Tropics
Author Correction: Ecology, evolution and spillover of coronaviruses from bats.
In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002–2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat–coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic
The influence of vector‐borne disease on human history: socio‐ecological mechanisms
Vector-borne diseases (VBDs) are embedded within complex socio-ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population-level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history
Fluctuations in anthropogenic nighttime lights from satellite imagery for five cities in Niger and Nigeria
Dynamic measures of human populations are critical for global health management but are often overlooked, largely because they are difficult to quantify. Measuring human population dynamics can be prohibitively expensive in under-resourced communities. Satellite imagery can provide measurements of human populations, past and present, to complement public health analyses and interventions. We used anthropogenic illumination from publicly accessible, serial satellite nighttime images as a quantifiable proxy for seasonal population variation in five urban areas in Niger and Nigeria. We identified population fluxes as the mechanistic driver of regional seasonal measles outbreaks. Our data showed 1) urban illumination fluctuated seasonally, 2) corresponding population fluctuations were sufficient to drive seasonal measles outbreaks, and 3) overlooking these fluctuations during vaccination activities resulted in below-target coverage levels, incapable of halting transmission of the virus. We designed immunization solutions capable of achieving above-target coverage of both resident and mobile populations. Here, we provide detailed data on brightness from 2000-2005 for 5 cities in Niger and Nigeria and detailed methodology for application to other populations.</p
Transport and storage of sputum specimen by using cetylpyridinium chloride for isolation of mycobacteria
Of the 191 sputum specimens that were collected from pulmonary tuberculosis patients, 78.65% (140/178) specimens were culture positive when processed within 48 h by the NaOH method. The culture positivity in the same specimen that were stored with cetylpyridinium chloride (CPC) and processed after 7-8 days was 70.22% (125/178), whereas those stored without CPC and processed by the NaOH method was 46.62% (83/178). The difference in number of positive cultures obtained before storage and after storage (without CPC) was statistically significant (P = 0.001). Culture positivity by the CPC method was comparable with that of NaOH method before storage and the difference was not statistically significant (P = 0.35)
Disparities in mobile phone ownership reflect inequities in access to healthcare.
Human movement and population connectivity inform infectious disease management. Remote data, particularly mobile phone usage data, are frequently used to track mobility in outbreak response efforts without measuring representation in target populations. Using a detailed interview instrument, we measure population representation in phone ownership, mobility, and access to healthcare in a highly mobile population with low access to health care in Namibia, a middle-income country. We find that 1) phone ownership is both low and biased by gender, 2) phone ownership is correlated with differences in mobility and access to healthcare, and 3) reception is spatially unequal and scarce in non-urban areas. We demonstrate that mobile phone data do not represent the populations and locations that most need public health improvements. Finally, we show that relying on these data to inform public health decisions can be harmful with the potential to magnify health inequities rather than reducing them. To reduce health inequities, it is critical to integrate multiple data streams with measured, non-overlapping biases to ensure data representativeness for vulnerable populations