2,551 research outputs found

    Investigations on transparent liquid-miscibility gap systems

    Get PDF
    Sedimentation and phase separation is a well known occurrence in monotectic or miscibility gap alloys. Previous investigations indicate that it may be possible to prepare such alloys in a low-gravity space environment but recent experiments indicate that there may be nongravity dependent phase separation processes which can hinder the formation of such alloys. Such phase separation processes are studied using transparent liquid systems and holography. By reconstructing holograms into a commercial-particle-analysis system, real time computer analysis can be performed on emulsions with diameters in the range of 5 micrometers or greater. Thus dynamic effects associated with particle migration and coalescence can be studied. Characterization studies on two selected immiscible systems including an accurate determination of phase diagrams, surface and interfacial tension measurements, surface excess and wetting behavior near critical solution temperatures completed

    Transmission Phase of an Isolated Coulomb-Blockade Resonance

    Full text link
    In two recent papers, O. Entin-Wohlman et al. studied the question: ``Which physical information is carried by the transmission phase through a quantum dot?'' In the present paper, this question is answered for an islolated Coulomb-blockade resonance and within a theoretical model which is more closely patterned after the geometry of the actual experiment by Schuster et al. than is the model of O. Entin-Wohlman et al. We conclude that whenever the number of leads coupled to the Aharanov-Bohm interferometer is larger than two, and the total number of channels is sufficiently large, the transmission phase does reflect the Breit-Wigner behavior of the resonance phase shift.Comment: 6 pages and one figur

    Preventing transition to turbulence: a viscosity stratification does not always help

    Full text link
    In channel flows a step on the route to turbulence is the formation of streaks, often due to algebraic growth of disturbances. While a variation of viscosity in the gradient direction often plays a large role in laminar-turbulent transition in shear flows, we show that it has, surprisingly, little effect on the algebraic growth. Non-uniform viscosity therefore may not always work as a flow-control strategy for maintaining the flow as laminar.Comment: 9 pages, 8 figure

    Stoner gap in the superconducting ferromagnet UGe2

    Full text link
    We report the temperature (TT) dependence of ferromagnetic Bragg peak intensities and dc magnetization of the superconducting ferromagnet UGe2 under pressure (PP). We have found that the low-TT behavior of the uniform magnetization can be explained by a conventional Stoner model. A functional analysis of the data produces the following results: The ferromagnetic state below a critical pressure can be understood as the perfectly polarized state, in which heavy quasiparticles occupy only majority spin bands. A Stoner gap Δ(P)\Delta(P) decreases monotonically with increasing pressure and increases linearly with magnetic field. We show that the present analysis based on the Stoner model is justified by a consistency check, i.e., comparison of density of states at the Fermi energy deduced from the analysis with observed electronic specific heat coeffieients. We also argue the influence of the ferromagnetism on the superconductivity.Comment: 5 pages, 4 figures. to be published in Phys. Rev.

    Entanglement Entropy and Wilson Loop in St\"{u}ckelberg Holographic Insulator/Superconductor Model

    Full text link
    We study the behaviors of entanglement entropy and vacuum expectation value of Wilson loop in the St\"{u}ckelberg holographic insulator/superconductor model. This model has rich phase structures depending on model parameters. Both the entanglement entropy for a strip geometry and the heavy quark potential from the Wilson loop show that there exists a "confinement/deconfinement" phase transition. In addition, we find that the non-monotonic behavior of the entanglement entropy with respect to chemical potential is universal in this model. The pseudo potential from the spatial Wilson loop also has a similar non-monotonic behavior. It turns out that the entanglement entropy and Wilson loop are good probes to study the properties of the holographic superconductor phase transition.Comment: 23 pages,12 figures. v2: typos corrected, accepted in JHE

    The cosmological light-cone effect on the power spectrum of galaxies and quasars in wide-field redshift surveys

    Get PDF
    We examine observational consequences of the cosmological light-cone effect on the power spectrum of the distribution of galaxies and quasars from upcoming redshift surveys. First we derive an expression for the power spectrum of cosmological objects in real space on a light cone, PR,linLC(k)P^{\rm LC}_{\rm R,lin}(k), which is exact in linear theory of density perturbations. Next we incorporate corrections for the nonlinear density evolution and redshift-space distortion in the formula in a phenomenological manner which is consistent with recent numerical simulations. On the basis of this formula, we predict the power spectrum of galaxies and quasars on the light cone for future redshift surveys taking account of the selection function properly. We demonstrate that this formula provides a reliable and useful method to compute the power spectrum on the light cone given an evolution model of bias.Comment: 18 pages, 3 figures, to be published in the Astrophysical Journa

    Entanglement entropy in lattice gauge theories

    Get PDF
    We report on the recent progress in theoretical and numerical studies of entanglement entropy in lattice gauge theories. It is shown that the concept of quantum entanglement between gauge fields in two complementary regions of space can only be introduced if the Hilbert space of physical states is extended in a certain way. In the extended Hilbert space, the entanglement entropy can be partially interpreted as the classical Shannon entropy of the flux of the gauge fields through the boundary between the two regions. Such an extension leads to a reduction procedure which can be easily implemented in lattice simulations by constructing lattices with special topology. This enables us to measure the entanglement entropy in lattice Monte-Carlo simulations. On the simplest example of Z2 lattice gauge theory in (2 + 1) dimensions we demonstrate the relation between entanglement entropy and the classical entropy of the field flux. For SU(2) lattice gauge theory in four dimensions, we find a signature of non-analytic dependence of the entanglement entropy on the size of the region. We also comment on the holographic interpretation of the entanglement entropy.Comment: Talk presented at the Confinement8 conference (Mainz, Germany, September 1 - 6, 2008) and at the conference "Liouville Field Theory and Statistical Models", dedicated to Alexey Zamolodchikov memory (Moscow, Russia, June 21 - 24, 2008

    Zero Order Estimates for Analytic Functions

    Full text link
    The primary goal of this paper is to provide a general multiplicity estimate. Our main theorem allows to reduce a proof of multiplicity lemma to the study of ideals stable under some appropriate transformation of a polynomial ring. In particular, this result leads to a new link between the theory of polarized algebraic dynamical systems and transcendental number theory. On the other hand, it allows to establish an improvement of Nesterenko's conditional result on solutions of systems of differential equations. We also deduce, under some condition on stable varieties, the optimal multiplicity estimate in the case of generalized Mahler's functional equations, previously studied by Mahler, Nishioka, Topfer and others. Further, analyzing stable ideals we prove the unconditional optimal result in the case of linear functional systems of generalized Mahler's type. The latter result generalizes a famous theorem of Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it gives a counterpart in the case of functional systems for an important unconditional result of Nesterenko (1977) concerning linear differential systems. In summary, we provide a new universal tool for transcendental number theory, applicable with fields of any characteristic. It opens the way to new results on algebraic independence, as shown in Zorin (2010).Comment: 42 page

    Periodic-Orbit Bifurcations and Superdeformed Shell Structure

    Full text link
    We have derived a semiclassical trace formula for the level density of the three-dimensional spheroidal cavity. To overcome the divergences occurring at bifurcations and in the spherical limit, the trace integrals over the action-angle variables were performed using an improved stationary phase method. The resulting semiclassical level density oscillations and shell-correction energies are in good agreement with quantum-mechanical results. We find that the bifurcations of some dominant short periodic orbits lead to an enhancement of the shell structure for "superdeformed" shapes related to those known from atomic nuclei.Comment: 4 pages including 3 figure
    • 

    corecore