32 research outputs found

    Temperature Dependence of Hydrogen Adsorption on Pd-Modified Carbon Blacks and Their Enthalpy-Entropy Changes

    No full text
    Metal-carbon composites have recently gained attention as potential hydrogen storage materials. In the present investigation, carbon blacks (CBs) with 0.6 mass %, 4.9 mass %, and 9.3 mass % of Pd were prepared to investigate the cooperative effect together with Pd and CB for hydrogen storage. The hydrogen adsorption isotherms were measured at 77 K, 98 K, 123 K, 148 K, 173 K, 223 K, and 273 K under mild pressures below 1 MPa. The lower temperature gave the higher hydrogen content. Almost all the hydrogen contents of Pd-modified CBs exceeded the sum of the adsorption contents of CB and the occluded amounts of the assumed hydride, PdH0.6. The highest hydrogen content was recorded for Pd 0.6 mass %-modified CB at 77 K. At temperatures above 77 K, CBs with the higher Pd contents adsorbed more hydrogen than Pd 0.6 mass %-modified CB, and they indicated an increase in the absolute values of adsorption enthalpy with the progress of adsorption. Pd was thought to be at first blocking deep potential sites, with accessibility to hydrogen acceptable sites gradually increasing as adsorption progressed

    Temperature Dependence of Hydrogen Adsorption on Pd-Modified Carbon Blacks and Their Enthalpy-Entropy Changes

    No full text
    Metal-carbon composites have recently gained attention as potential hydrogen storage materials. In the present investigation, carbon blacks (CBs) with 0.6 mass %, 4.9 mass %, and 9.3 mass % of Pd were prepared to investigate the cooperative effect together with Pd and CB for hydrogen storage. The hydrogen adsorption isotherms were measured at 77 K, 98 K, 123 K, 148 K, 173 K, 223 K, and 273 K under mild pressures below 1 MPa. The lower temperature gave the higher hydrogen content. Almost all the hydrogen contents of Pd-modified CBs exceeded the sum of the adsorption contents of CB and the occluded amounts of the assumed hydride, PdH0.6. The highest hydrogen content was recorded for Pd 0.6 mass %-modified CB at 77 K. At temperatures above 77 K, CBs with the higher Pd contents adsorbed more hydrogen than Pd 0.6 mass %-modified CB, and they indicated an increase in the absolute values of adsorption enthalpy with the progress of adsorption. Pd was thought to be at first blocking deep potential sites, with accessibility to hydrogen acceptable sites gradually increasing as adsorption progressed

    Concentration-dependent oligomerization of an alpha-helical antifreeze polypeptide makes it hyperactive

    Get PDF
    A supersoluble 40-residue type I antifreeze protein (AFP) was discovered in a righteye flounder, the barfin plaice (bp). Unlike all other AFPs characterized to date, bpAFP transitions from moderately-active to hyperactive with increasing concentration. At sub-mM concentrations, bpAFP bound to pyramidal planes of ice to shape it into a bi-pyramidal hexagonal trapezohedron, similarly to the other moderately-active AFPs. At sub-mM concentrations, bpAFP uniquely underwent further binding to the whole ice crystal surface including the basal planes. The latter caused a bursting ice crystal growth normal to c-axis, 3 degrees C of high thermal hysteresis, and alteration of an ice crystal into a smaller lemon-shaped morphology, all of which are well-known properties of hyperactive AFPs. Analytical ultracentrifugation showed this activity transition is associated with oligomerization to form tetramer, which might be the forerunner of a naturally occurring four-helix-bundle AFP in other flounders

    Antifreeze protein prolongs the life-time of insulinoma cells during hypothermic preservation.

    Get PDF
    It is sometimes desirable to preserve mammalian cells by hypothermia rather than freezing during short term transplantation. Here we found an ability of hypothermic (+4°C) preservation of fish antifreeze protein (AFP) against rat insulinoma cells denoted as RIN-5F. The preservation ability was compared between type I-III AFPs and antifreeze glycoprotein (AFGP), which could be recently mass-prepared by a developed technique utilizing the muscle homogenates, but not the blood serum, of cold-adapted fishes. For AFGP, whose molecular weight is distributed in the range from 2.6 to 34 kDa, only the proteins less than 10 kDa were examined. The viability rate was evaluated by counting of the preserved RIN-5F cells unstained with trypan blue. Significantly, either AFPI or AFPIII dissolved into Euro-Collins (EC) solution at a concentration of 10 mg/ml could preserve approximately 60% of the cells for 5 days at +4°C. The 5-day preserved RIN-5F cells retained the ability to secrete insulin. Only 2% of the cells were, however, preserved for 5 days without AFP. Confocal photomicroscopy experiments further showed the significant binding ability of AFP to the cell surface. These results suggest that fish AFP enables 5-day quality storage of the insulinoma cells collected from a donor without freezing

    Calcium-Binding Generates the Semi-Clathrate Waters on a Type II Antifreeze Protein to Adsorb onto an Ice Crystal Surface

    Get PDF
    Hydration is crucial for a function and a ligand recognition of a protein. The hydration shell constructed on an antifreeze protein (AFP) contains many organized waters, through which AFP is thought to bind to specific ice crystal planes. For a Ca2+-dependent species of AFP, however, it has not been clarified how 1 mol of Ca2+-binding is related with the hydration and the ice-binding ability. Here we determined the X-ray crystal structure of a Ca2+-dependent AFP (jsAFP) from Japanese smelt, Hypomesus nipponensis, in both Ca2+-bound and -free states. Their overall structures were closely similar (Root mean square deviation (RMSD) of Cα = 0.31 Å), while they exhibited a significant difference around their Ca2+-binding site. Firstly, the side-chains of four of the five Ca2+-binding residues (Q92, D94 E99, D113, and D114) were oriented to be suitable for ice binding only in the Ca2+-bound state. Second, a Ca2+-binding loop consisting of a segment D94−E99 becomes less flexible by the Ca2+-binding. Third, the Ca2+-binding induces a generation of ice-like clathrate waters around the Ca2+-binding site, which show a perfect position-match to the waters constructing the first prism plane of a single ice crystal. These results suggest that generation of ice-like clathrate waters induced by Ca2+-binding enables the ice-binding of this protein

    Freeze Tolerance in Sculpins (Pisces; Cottoidea) Inhabiting North Pacific and Arctic Oceans: Antifreeze Activity and Gene Sequences of the Antifreeze Protein

    No full text
    Many marine species inhabiting icy seawater produce antifreeze proteins (AFPs) to prevent their body fluids from freezing. The sculpin species of the superfamily Cottoidea are widely found from the Arctic to southern hemisphere, some of which are known to express AFP. Here we clarified DNA sequence encoding type I AFP for 3 species of 2 families (Cottidae and Agonidae) belonging to Cottoidea. We also examined antifreeze activity for 3 families and 32 species of Cottoidea (Cottidae, Agonidae, and Rhamphocottidae). These fishes were collected in 2013–2015 from the Arctic Ocean, Alaska, Japan. We could identify 8 distinct DNA sequences exhibiting a high similarity to those reported for Myoxocephalus species, suggesting that Cottidae and Agonidae share the same DNA sequence encoding type I AFP. Among the 3 families, Rhamphocottidae that experience a warm current did not show antifreeze activity. The species inhabiting the Arctic Ocean and Northern Japan that often covered with ice floe showed high activity, while those inhabiting Alaska, Southern Japan with a warm current showed low/no activity. These results suggest that Cottoidea acquires type I AFP gene before dividing into Cottidae and Agonidae, and have adapted to each location with optimal antifreeze activity level

    Activity of a Two-Domain Antifreeze Protein Is Not Dependent on Linker Sequence

    Get PDF
    The reported NMR structure of RD3, a naturally occurring two-domain antifreeze protein, suggests that the two nearly identical domains are oriented to allow simultaneous binding of their active regions to the ice surface. It is implied that the nine residues linking the two domains play a role in this alignment, but this has not been established. We have designed and expressed a modified form of RD3 that replaces the nine-residue linker with a generic sequence of one serine and eight glycine residues to test the importance of the linker amino acid sequence. The modified linker is shown to have significantly different characteristics compared to the original linker. Heteronuclear nuclear Overhauser effect experiments show that the new linker residues have more mobility than the linker residues in the native protein. Further, NMR data show that the folding of the C-terminal domain is somewhat perturbed by the altered linker. Finally, distributions of residual dipolar couplings indicate that the two domains tumble and move independently of each other. Nevertheless, the thermal hysteresis activity of the modified protein is indistinguishable from that of native RD3, proving that increased activity of the two-domain antifreeze protein is not dependent on structure of the linker
    corecore