5,637 research outputs found
Properties of contact matrices induced by pairwise interactions in proteins
The total conformational energy is assumed to consist of pairwise interaction
energies between atoms or residues, each of which is expressed as a product of
a conformation-dependent function (an element of a contact matrix, C-matrix)
and a sequence-dependent energy parameter (an element of a contact energy
matrix, E-matrix). Such pairwise interactions in proteins force native
C-matrices to be in a relationship as if the interactions are a Go-like
potential [N. Go, Annu. Rev. Biophys. Bioeng. 12. 183 (1983)] for the native
C-matrix, because the lowest bound of the total energy function is equal to the
total energy of the native conformation interacting in a Go-like pairwise
potential. This relationship between C- and E-matrices corresponds to (a) a
parallel relationship between the eigenvectors of the C- and E-matrices and a
linear relationship between their eigenvalues, and (b) a parallel relationship
between a contact number vector and the principal eigenvectors of the C- and
E-matrices; the E-matrix is expanded in a series of eigenspaces with an
additional constant term, which corresponds to a threshold of contact energy
that approximately separates native contacts from non-native ones. These
relationships are confirmed in 182 representatives from each family of the SCOP
database by examining inner products between the principal eigenvector of the
C-matrix, that of the E-matrix evaluated with a statistical contact potential,
and a contact number vector. In addition, the spectral representation of C- and
E-matrices reveals that pairwise residue-residue interactions, which depends
only on the types of interacting amino acids but not on other residues in a
protein, are insufficient and other interactions including residue
connectivities and steric hindrance are needed to make native structures the
unique lowest energy conformations.Comment: Errata in DOI:10.1103/PhysRevE.77.051910 has been corrected in the
present versio
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., Buneman, Weibel and
other two-stream instabilities) created in collisionless shocks are responsible
for particle (electron, positron, and ion) acceleration. Using a 3-D
relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating into
an ambient plasma. We find small differences in the results for no ambient and
modest ambient magnetic fields. Simulations show that the Weibel instability
created in the collisionless shock front accelerates jet and ambient particles
both perpendicular and parallel to the jet propagation direction. The small
scale magnetic field structure generated by the Weibel instability is
appropriate to the generation of ``jitter'' radiation from deflected electrons
(positrons) as opposed to synchrotron radiation. The jitter radiation resulting
from small scale magnetic field structures may be important for understanding
the complex time structure and spectral evolution observed in gamma-ray bursts
or other astrophysical sources containing relativistic jets and relativistic
collisionless shocks.Comment: 6 pages, 1 figure, revised and accepted for Advances in Space
Research (35th COSPAR Scientific Assembly, Paris, 18-25 July 2004
ppK- bound states from Skyrmions
The bound kaon approach to the strangeness in the Skyrme model is applied to
investigating the possibility of deeply bound states. We describe the
system as two-Skyrmion around which a kaon field fluctuates. Each
Skyrmion is rotated in the space of SU(2) collective coordinate. The rotational
motions are quantized to be projected onto the spin-singlet proton-proton
state. We derive the equation of motion for the kaon in the background field of
two Skyrmions at fixed positions. From the numerical solution of the equation
of motion, it is found that the energy of can be considerably small, and
that the distribution of shows molecular nature of the system.
For this deep binding, the Wess-Zumino-Witten term plays an important role. The
total energy of the system is estimated in the Born-Oppenheimer
approximation. The binding energy of the state is MeV.
The mean square radius of the subsystem is
fm.Comment: Oct 2007, 15 pages, 8 figures; added references, corrected typo
Recoverable One-dimensional Encoding of Three-dimensional Protein Structures
Protein one-dimensional (1D) structures such as secondary structure and
contact number provide intuitive pictures to understand how the native
three-dimensional (3D) structure of a protein is encoded in the amino acid
sequence. However, it has not been clear whether a given set of 1D structures
contains sufficient information for recovering the underlying 3D structure.
Here we show that the 3D structure of a protein can be recovered from a set of
three types of 1D structures, namely, secondary structure, contact number and
residue-wise contact order which is introduced here for the first time. Using
simulated annealing molecular dynamics simulations, the structures satisfying
the given native 1D structural restraints were sought for 16 proteins of
various structural classes and of sizes ranging from 56 to 146 residues. By
selecting the structures best satisfying the restraints, all the proteins
showed a coordinate RMS deviation of less than 4\AA{} from the native
structure, and for most of them, the deviation was even less than 2\AA{}. The
present result opens a new possibility to protein structure prediction and our
understanding of the sequence-structure relationship.Comment: Corrected title. No Change In Content
Particle Acceleration in Relativistic Jets due to Weibel Instability
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. While some Fermi acceleration may occur at the
jet front, the majority of electron acceleration takes place behind the jet
front and cannot be characterized as Fermi acceleration. The simulation results
show that this instability is responsible for generating and amplifying highly
nonuniform, small-scale magnetic fields, which contribute to the electron's
transverse deflection behind the jet head. The ``jitter'' radiation (Medvedev
2000) from deflected electrons has different properties than synchrotron
radiation which is calculated in a uniform magnetic field. This jitter
radiation may be important to understanding the complex time evolution and/or
spectral structure in gamma-ray bursts, relativistic jets, and supernova
remnants.Comment: ApJ, in press, Sept. 20, 2003 (figures with better resolution:
http://gammaray.nsstc.nasa.gov/~nishikawa/apjweib.pdf
Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. The simulation results show that this
instability is responsible for generating and amplifying highly nonuniform,
small-scale magnetic fields, which contribute to the electron's transverse
deflection behind the jet head. The ``jitter'' radiation from deflected
electrons has different properties than synchrotron radiation which is
calculated in a uniform magnetic field. This jitter radiation may be important
to understanding the complex time evolution and/or spectral structure in
gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 1 figure, submitted to Proceedings of 2003 Gamma Ray Burst
Conferenc
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., Buneman, Weibel and
other two-stream instabilities) created in collisionless shocks are responsible
for particle (electron, positron, and ion) acceleration. Using a 3-D
relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic electron-positron jet
front propagating into an ambient electron-positron plasma with and without
initial magnetic fields. We find small differences in the results for no
ambient and modest ambient magnetic fields. New simulations show that the
Weibel instability created in the collisionless shock front accelerates jet and
ambient particles both perpendicular and parallel to the jet propagation
direction. Furthermore, the non-linear fluctuation amplitudes of densities,
currents, electric, and magnetic fields in the electron-positron shock are
larger than those found in the electron-ion shock studied in a previous paper
at the comparable simulation time. This comes from the fact that both electrons
and positrons contribute to generation of the Weibel instability. Additionally,
we have performed simulations with different electron skin depths. We find that
growth times scale inversely with the plasma frequency, and the sizes of
structures created by the Weibel instability scale proportional to the electron
skin depth. This is the expected result and indicates that the simulations have
sufficient grid resolution. The simulation results show that the Weibel
instability is responsible for generating and amplifying nonuniform,
small-scale magnetic fields which contribute to the electron's (positron's)
transverse deflection behind the jet head.Comment: 18 pages, 8 figures, revised and accepted for ApJ, A full resolution
of the paper can be found at
http://gammaray.nsstc.nasa.gov/~nishikawa/apjep1.pd
CRNPRED: highly accurate prediction of one-dimensional protein structures by large-scale critical random networks
BACKGROUND: One-dimensional protein structures such as secondary structures or contact numbers are useful for three-dimensional structure prediction and helpful for intuitive understanding of the sequence-structure relationship. Accurate prediction methods will serve as a basis for these and other purposes. RESULTS: We implemented a program CRNPRED which predicts secondary structures, contact numbers and residue-wise contact orders. This program is based on a novel machine learning scheme called critical random networks. Unlike most conventional one-dimensional structure prediction methods which are based on local windows of an amino acid sequence, CRNPRED takes into account the whole sequence. CRNPRED achieves, on average per chain, Q(3 )= 81% for secondary structure prediction, and correlation coefficients of 0.75 and 0.61 for contact number and residue-wise contact order predictions, respectively. CONCLUSION: CRNPRED will be a useful tool for computational as well as experimental biologists who need accurate one-dimensional protein structure predictions
Black Best-Selling Books and Bibliographical Concerns: The Essence Book Project
On October 27, 2021, the Bibliographical Society of America (BSA) sponsored the first in a series of virtual interviews about the Essence Book Project. Founded by Jacinta R. Saffold, the BSA’s inaugural Dorothy Porter Wesley Fellow, the Essence Book Project is a database of the books that appeared on Essence magazine’s bestsellers’ list from 1994 to 2010. In talking about the project with Kinohi Nishikawa, Saffold highlights how Black best-selling books contribute new paths of inquiry to bibliographical scholarship and explains why it is important to archive contemporary Black print culture. Presented in this article is a modified version of the conversation
- …