8,413 research outputs found
Impossibility of the Efimov effect for p-wave interactions
Whether the Efimov effect is possible, in principle, for p-wave or higher
partial-wave interactions is a fundamental question. Recently, there has been a
claim that three nonrelativistic particles with resonant p-wave interactions
exhibit the Efimov effect. We point out that the assumed p-wave scattering
amplitude inevitably causes a negative probability. This indicates that the
Efimov states found there cannot be realized in physical situations. We also
restate our previous argument that the Efimov effect, defined as an infinite
tower of universal bound states characterized by discrete scale invariance, is
impossible for p-wave or higher partial-wave interactions.Comment: 3 pages, no figure; published versio
Liberating Efimov physics from three dimensions
When two particles attract via a resonant short-range interaction, three
particles always form an infinite tower of bound states characterized by a
discrete scaling symmetry. It has been considered that this Efimov effect
exists only in three dimensions. Here we review how the Efimov physics can be
liberated from three dimensions by considering two-body and three-body
interactions in mixed dimensions and four-body interaction in one dimension. In
such new systems, intriguing phenomena appear, such as confinement-induced
Efimov effect, Bose-Fermi crossover in Efimov spectrum, and formation of
interlayer Efimov trimers. Some of them are observable in ultracold atom
experiments and we believe that this study significantly broadens our horizons
of universal Efimov physics.Comment: 17 pages, 5 figures, contribution to a special issue of Few-Body
Systems devoted to Efimov Physic
Unitary Fermi gas, epsilon expansion, and nonrelativistic conformal field theories
We review theoretical aspects of unitary Fermi gas (UFG), which has been
realized in ultracold atom experiments. We first introduce the epsilon
expansion technique based on a systematic expansion in terms of the
dimensionality of space. We apply this technique to compute the thermodynamic
quantities, the quasiparticle spectrum, and the critical temperature of UFG. We
then discuss consequences of the scale and conformal invariance of UFG. We
prove a correspondence between primary operators in nonrelativistic conformal
field theories and energy eigenstates in a harmonic potential. We use this
correspondence to compute energies of fermions at unitarity in a harmonic
potential. The scale and conformal invariance together with the general
coordinate invariance constrains the properties of UFG. We show the vanishing
bulk viscosities of UFG and derive the low-energy effective Lagrangian for the
superfluid UFG. Finally we propose other systems exhibiting the nonrelativistic
scaling and conformal symmetries that can be in principle realized in ultracold
atom experiments.Comment: 44 pages, 15 figures, contribution to Lecture Notes in Physics
"BCS-BEC crossover and the Unitary Fermi Gas" edited by W. Zwerge
Probing strongly interacting atomic gases with energetic atoms
We investigate properties of an energetic atom propagating through strongly
interacting atomic gases. The operator product expansion is used to
systematically compute a quasiparticle energy and its scattering rate both in a
spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent
quantum Monte Carlo simulations even at a relatively small momentum k/kF>1.5
indicates that our large-momentum expansions are valid in a wide range of
momentum. We also study a differential scattering rate when a probe atom is
shot into atomic gases. Because the number density and current density of the
target atomic gas contribute to the forward scattering only, its contact
density (measure of short-range pair correlation) gives the leading
contribution to the backward scattering. Therefore, such an experiment can be
used to measure the contact density and thus provides a new local probe of
strongly interacting atomic gases.Comment: 35 pages, 11 figures; (v4) published with the new titl
Settlement rehabilitation of a 35 year old building : case study integrated with analysis and implementation
This paper presents a rehabilitation project concerning the settlement of a 35 year old building. The foundation system of the northwest wing of the building consists of strip footings and slabon-grade. Differential settlement results in significant cracking of the masonry partition walls located on the footing and hence rehabilitation of the footing is required to stabilize the foundation system. Geotechnical and structural investigations are conducted, including site borings and analytical modeling based on one-dimensional consolidation theory that is incorporated into a finite element analysis. The predictive model exhibits that the differential settlement does not cause noticeable distress for the primary structural members, whereas the continued settlement affects use of the building. Site implementation is performed with the pushpile method to terminate the continuous settlement of the foundation
Quantizing Majorana Fermions in a Superconductor
A Dirac-type matrix equation governs surface excitations in a topological
insulator in contact with an s-wave superconductor. The order parameter can be
homogenous or vortex valued. In the homogenous case a winding number can be
defined whose non-vanishing value signals topological effects. A vortex leads
to a static, isolated, zero energy solution. Its mode function is real, and has
been called "Majorana." Here we demonstrate that the reality/Majorana feature
is not confined to the zero energy mode, but characterizes the full quantum
field. In a four-component description a change of basis for the relevant
matrices renders the Hamiltonian imaginary and the full, space-time dependent
field is real, as is the case for the relativistic Majorana equation in the
Majorana matrix representation. More broadly, we show that the Majorana
quantization procedure is generic to superconductors, with or without the Dirac
structure, and follows from the constraints of fermionic statistics on the
symmetries of Bogoliubov-de Gennes Hamiltonians. The Hamiltonian can always be
brought to an imaginary form, leading to equations of motion that are real with
quantized real field solutions. Also we examine the Fock space realization of
the zero mode algebra for the Dirac-type systems. We show that a
two-dimensional representation is natural, in which fermion parity is
preserved.Comment: 26 pages, no figure
Megabits secure key rate quantum key distribution
Quantum cryptography (QC) can provide unconditional secure communication
between two authorized parties based on the basic principles of quantum
mechanics. However, imperfect practical conditions limit its transmission
distance and communication speed. Here we implemented the differential phase
shift (DPS) quantum key distribution (QKD) with up-conversion assisted hybrid
photon detector (HPD) and achieved 1.3 M bits per second secure key rate over a
10-km fiber, which is tolerant against the photon number splitting (PNS)
attack, general collective attacks on individual photons, and any other known
sequential unambiguous state discrimination (USD) attacks.Comment: 14 pages, 4 figure
Single crystal MgB2 with anisotropic superconducting properties
The discovery of superconductor in magnesium diboride MgB2 with high Tc (39
K) has raised some challenging issues; whether this new superconductor
resembles a high temperature cuprate superconductor(HTS) or a low temperature
metallic superconductor; which superconducting mechanism, a phonon- mediated
BCS or a hole superconducting mechanism or other new exotic mechanism may
account for this superconductivity; and how about its future for applications.
In order to clarify the above questions, experiments using the single crystal
sample are urgently required. Here we have first succeeded in obtaining the
single crystal of this new MgB2 superconductivity, and performed its electrical
resistance and magnetization measurements. Their experiments show that the
electronic and magnetic properties depend on the crystallographic direction.
Our results indicate that the single crystal MgB2 superconductor shows
anisotropic superconducting properties and thus can provide scientific basis
for the research of its superconducting mechanism and its applications.Comment: 7 pages pdf fil
A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method
A particle method for reproducing the phase space of collisionless stellar
systems is described. The key idea originates in Liouville's theorem which
states that the distribution function (DF) at time t can be derived from
tracing necessary orbits back to t=0. To make this procedure feasible, a
self-consistent field (SCF) method for solving Poisson's equation is adopted to
compute the orbits of arbitrary stars. As an example, for the violent
relaxation of a uniform-density sphere, the phase-space evolution which the
current method generates is compared to that obtained with a phase-space method
for integrating the collisionless Boltzmann equation, on the assumption of
spherical symmetry. Then, excellent agreement is found between the two methods
if an optimal basis set for the SCF technique is chosen. Since this
reproduction method requires only the functional form of initial DFs but needs
no assumptions about symmetry of the system, the success in reproducing the
phase-space evolution implies that there would be no need of directly solving
the collisionless Boltzmann equation in order to access phase space even for
systems without any special symmetries. The effects of basis sets used in SCF
simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To
be published in ApJ, Oct. 1, 1997. This preprint is also available at
http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm
- …