58 research outputs found
Content Based Document Recommender using Deep Learning
With the recent advancements in information technology there has been a huge
surge in amount of data available. But information retrieval technology has not
been able to keep up with this pace of information generation resulting in over
spending of time for retrieving relevant information. Even though systems exist
for assisting users to search a database along with filtering and recommending
relevant information, but recommendation system which uses content of documents
for recommendation still have a long way to mature. Here we present a Deep
Learning based supervised approach to recommend similar documents based on the
similarity of content. We combine the C-DSSM model with Word2Vec distributed
representations of words to create a novel model to classify a document pair as
relevant/irrelavant by assigning a score to it. Using our model retrieval of
documents can be done in O(1) time and the memory complexity is O(n), where n
is number of documents.Comment: Accepted in ICICI 2017, Coimbatore, Indi
Does Virtualization Capability Maturity Influence Information Systems Development Performance? Theorizing The Non-Linear Payoffs
Firms are increasingly relying on digital transformation and virtualization of physical IT assets to develop information systems projects. However, the assessment of this virtualization on the performance of information systems development (ISD) projects is still unclear. Drawing upon the theories of radical innovation and process virtualization, we develop and empirically test a research model describing the relationships of virtualization capability maturity (VCM) with ISD project performance. Our findings show inverted U-shaped relationships of VCM with both ISD process and product performance. Interestingly, ISD projects achieve performance improvements as they progress incrementally from VCM levels of 0 to 2, but at VCM level 3 performance declines. Also, we observe that at higher levels of VCM, ISD process performance declines more rapidly than ISD product performance and the resources spent on ISD project execution increases non-linearly with increasing levels of VCM. Implications of these results are discussed
Nanotechnology Synergised Immunoengineering for Cancer
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic. As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies avail in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment
Ultrahigh Penetration and Retention of Graphene Quantum Dot Mesoporous Silica Nanohybrids for Image Guided Tumor Regression
Funding: This work was supported by Department of Biotechnology, Government of India. J.C. acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). We thank the staff of animal house, NCCS, Pune for supporting us during animal studies. We also thank Mr. Sumit for the discussion and Dr. Mukesh K. Kumawat for providing GQDs.So far, near-infrared (NIR) light responsive nanostructures have been well-defined in cancer nanomedicine. However, poor penetration and retention in tumors are the limiting factors. Here, we report the ultrahigh penetration and retention of carbanosilica (graphene quantum dots, GQDs embedded mesoporous silica) in solid tumors. After NIR light exposure, quick (0.5 h) emission from the tumor area is observed that is further retained up to a week (tested up to 10 days) with a single dose administration of nanohybrids. Emissive and photothermally active GQDs and porous silica shell (about 31% drug loading) make carbanosilica a promising nanotheranostic agent exhibiting 68.75% tumor shrinking compared to without NIR light exposure (34.48%). Generated heat (∼52 °C) alters the permeability of tumor enhancing the accumulation of nanotheranostics into the tumor environment. Successive tumor imaging ensures the prolonged follow-up of image guided tumor regression due to synergistic therapeutic effect of nanohybrids.publishersversionpublishe
Liposomal nanotheranostics for multimode targeted in vivo bioimaging and near‐infrared light mediated cancer therapy
Developing a nanotheranostic agent with better image resolution and high accumulation into solid tumor microenvironment is a challenging task. Herein, we established a light mediated phototriggered strategy for enhanced tumor accumulation of nanohybrids. A multifunctional liposome based nanotheranostics loaded with gold nanoparticles (AuNPs) and emissive graphene quantum dots (GQDs) were engineered named as NFGL. Further, doxorubicin hydrochloride was encapsulated in NFGL to exhibit phototriggered chemotherapy and functionalized with folic acid targeting ligands. Encapsulated agents showed imaging bimodality for in vivo tumor diagnosis due to their high contrast and emissive nature. Targeted NFGL nanohybrids demonstrated near infrared light (NIR, 750 nm) mediated tumor reduction because of generated heat and Reactive Oxygen Species (ROS). Moreover, NFGL nanohybrids exhibited remarkable ROS scavenging ability as compared to GQDs loaded liposomes validated by antitumor study. Hence, this approach and engineered system could open new direction for targeted imaging and cancer therapy.publishersversionpublishe
Habitat selection by an avian top predator in the tropical megacity of Delhi: human activities and socio-religious practices as prey-facilitating tools
Research in urban ecology is growing rapidly in response to the exponential growth of the urban environment. However, few studies have focused on tropical megacities, and on the interplay between predators’ habitat selection and human socio-economic aspects, which may mediate their resilience and coexistence with humans. We examined mechanisms of breeding habitat selection by a synanthropic raptor, the Black Kite Milvus migrans, in Delhi (India) where kites mainly subsist on: (1) human refuse and its associated prey-fauna, and (2) ritualised feeding of kites, particularly practised by Muslims. We used mixed effects models to test the effect of urban habitat configuration and human practices on habitat selection, site occupancy and breeding success. Kite habitat decisions, territory occupancy and breeding success were tightly enmeshed with human activities: kites preferred areas with high human density, poor waste management and a road configuration that facilitated better access to resources provided by humans, in particular to Muslim colonies that provided ritual subsidies. Furthermore, kites bred at ‘clean’ sites with less human refuse only when close to Muslim colonies, suggesting that the proximity to ritual-feeding sites modulated the suitability of other habitats. Rather than a nuisance to avoid, as previously portrayed, humans were a keenly-targeted foraging resource, which tied a predator’s distribution to human activities, politics, history, socio-economics and urban planning at multiple spatio-temporal scales. Many synurbic species may exploit humans in more subtle and direct ways than was previously assumed, but uncovering them will require greater integration of human socio-cultural estimates in urban ecological research
Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations
Background
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations.
Methods
Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required.
Results
Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals.
Conclusions
Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families
- …