40 research outputs found
Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial
Abstract\ud
\ud
\ud
\ud
Introduction\ud
\ud
Several studies have shown that maximizing stroke volume (or increasing it until a plateau is reached) by volume loading during high-risk surgery may improve post-operative outcome. This goal could be achieved simply by minimizing the variation in arterial pulse pressure (ΔPP) induced by mechanical ventilation. We tested this hypothesis in a prospective, randomized, single-centre study. The primary endpoint was the length of postoperative stay in hospital.\ud
\ud
\ud
\ud
Methods\ud
\ud
Thirty-three patients undergoing high-risk surgery were randomized either to a control group (group C, n = 16) or to an intervention group (group I, n = 17). In group I, ΔPP was continuously monitored during surgery by a multiparameter bedside monitor and minimized to 10% or less by volume loading.\ud
\ud
\ud
\ud
Results\ud
\ud
Both groups were comparable in terms of demographic data, American Society of Anesthesiology score, type, and duration of surgery. During surgery, group I received more fluid than group C (4,618 ± 1,557 versus 1,694 ± 705 ml (mean ± SD), P < 0.0001), and ΔPP decreased from 22 ± 75 to 9 ± 1% (P < 0.05) in group I. The median duration of postoperative stay in hospital (7 versus 17 days, P < 0.01) was lower in group I than in group C. The number of postoperative complications per patient (1.4 ± 2.1 versus 3.9 ± 2.8, P < 0.05), as well as the median duration of mechanical ventilation (1 versus 5 days, P < 0.05) and stay in the intensive care unit (3 versus 9 days, P < 0.01) was also lower in group I.\ud
\ud
\ud
\ud
Conclusion\ud
\ud
Monitoring and minimizing ΔPP by volume loading during high-risk surgery improves postoperative outcome and decreases the length of stay in hospital.\ud
\ud
\ud
\ud
Trial registration\ud
\ud
NCT00479011The authors thank Maria De Amorim (Paris, France) and Julia Fukushima (São Paulo, SP, Brazil) for help in data analysis, Dr Julia Wendon (London, UK) for reviewing the manuscript, and Dixtal (Sao Paulo, SP, Brazil) for providing the software for the automatic calculation of ?PP.The authors thank Maria De Amorim (Paris, France) and Julia Fukushima (São Paulo, SP, Brazil) for help in data analysis, Dr Julia Wendon (London, UK) for reviewing the manuscript, and Dixtal (Sao Paulo, SP, Brazil) for providing the software for the automatic calculation of ?PP
Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial
Background: Intravenous (IV) fluid administration is an essential part of postoperative care. Some studies suggest that a restricted post-operative fluid regime reduces complications and postoperative hospital stay after surgery. We investigated the effects of postoperative fluid restriction in surgical patients undergoing major abdominal surgery. Methods: In a blinded randomized trial, 62 patients (ASA I-III) undergoing elective major abdominal surgical procedures in a university hospital were allocated either to a restricted (1.5 L/24 h) or a standard postoperative IV fluid regime (2.5 L/24 h). Primary endpoint was length of postoperative hospital stay (PHS). Secondary endpoints included postoperative complications and time to restore gastric functions. Results: After a 1-year inclusion period, an unplanned interim analysis was made because of many protocol violations due to patient deterioration. In the group with the restricted regime we found a significantly increased PHS (12.3 vs. 8.3 days; p = 0.049) and significantly more major complications: 12 in 30 (40%) vs. 5 in 32 (16%) patients (Absolute Risk Increase: 0.24 [95%CI: 0.03 to 0.46], i.e. a number needed to harm of 4 [95%CI: 2-33]). Therefore, the trial was stopped prematurely. Intention to treat analysis showed no differences in time to restore gastric functions between the groups. Conclusion: Restricted postoperative IV fluid management, as performed in this trial, in patients undergoing major abdominal surgery appears harmful as it is accompanied by an increased risk of major postoperative complications and a prolonged postoperative hospital stay
Design and Organization of the Dexamethasone, Light Anesthesia and Tight Glucose Control (DeLiT) Trial: a factorial trial evaluating the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery
<p>Abstract</p> <p>Background</p> <p>The perioperative period is characterized by an intense inflammatory response. Perioperative inflammation promotes postoperative morbidity and increases mortality. Blunting the inflammatory response to surgical trauma might thus improve perioperative outcomes. We are studying three interventions that potentially modulate perioperative inflammation: corticosteroids, tight glucose control, and light anesthesia.</p> <p>Methods/Design</p> <p>The DeLiT Trial is a factorial randomized single-center trial of dexamethasone vs placebo, intraoperative tight vs. conventional glucose control, and light vs deep anesthesia in patients undergoing major non-cardiac surgery. Anesthetic depth will be estimated with Bispectral Index (BIS) monitoring (Aspect medical, Newton, MA). The primary outcome is a composite of major postoperative morbidity including myocardial infarction, stroke, sepsis, and 30-day mortality. C-reactive protein, a measure of the inflammatory response, will be evaluated as a secondary outcome. One-year all-cause mortality as well as post-operative delirium will be additional secondary outcomes. We will enroll up to 970 patients which will provide 90% power to detect a 40% reduction in the primary outcome, including interim analyses for efficacy and futility at 25%, 50% and 75% enrollment.</p> <p>Discussion</p> <p>The DeLiT trial started in February 2007. We expect to reach our second interim analysis point in 2010. This large randomized controlled trial will provide a reliable assessment of the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery. The factorial design will enable us to simultaneously study the effects of the three interventions in the same population, both individually and in different combinations. Such a design is an economically efficient way to study the three interventions in one clinical trial vs three.</p> <p>Trial registration</p> <p><b>This trial is registered at </b>Clinicaltrials.gov <b>#</b>: NTC00433251</p
Perioperative fluid and volume management: physiological basis, tools and strategies
Fluid and volume therapy is an important cornerstone of treating critically ill patients in the intensive care unit and in the operating room. New findings concerning the vascular barrier, its physiological functions, and its role regarding vascular leakage have lead to a new view of fluid and volume administration. Avoiding hypervolemia, as well as hypovolemia, plays a pivotal role when treating patients both perioperatively and in the intensive care unit. The various studies comparing restrictive vs. liberal fluid and volume management are not directly comparable, do not differ (in most instances) between colloid and crystalloid administration, and mostly do not refer to the vascular barrier's physiologic basis. In addition, very few studies have analyzed the use of advanced hemodynamic monitoring for volume management
Impact of intraoperative fluid administration on outcome in patients undergoing robotic-assisted laparoscopic prostatectomy – a retrospective analysis
BACKGROUND Robotic-assisted laparoscopic prostatectomy (RALP) gained much popularity during the last decade. Although the influence of intraoperative fluid management on patients' outcome has been largely discussed in general, its impact on perioperative complications and length of hospitalization in patients undergoing RALP has not been examined so far. We hypothesized that a more restrictive fluid management might lead to a shortened length of hospitalization and a decreased rate of complications in our patients. METHODS Retrospective analysis of data of 182 patients undergoing RALP at an University Hospital (first series of RALP performed at the center). RESULTS The amount of fluid administered was initially normalized for body mass index of the patient and the duration of the operation and additionally corrected for age and the interaction of these variables. The application of crystalloids (multiple linear regression model, estimate = -0.044, p = 0.734) had no effect on the length of hospitalization, whereas a negative effect was found for colloids (estimate = -8.317, p = 0.021). Additionally, a significant interaction term between age and the amount of colloid applied (estimate = 0.129, p = 0.028) was calculated. Evaluation of the influence of intraoperative fluid administration using multiple logistic regression models corrected for body mass index, duration of the surgery and additionally for age revealed a negative effect of crystalloids on the incidence of an anastomotic leak between bladder and urethra (estimate = -23.860, p = 0.017), with a significant interaction term between age and the amount of crystalloids (estimate = 0.396, p = 0.0134). Colloids had no significant effect on this particular complication (estimate = 1.887, p = 0.524). Intraoperative blood loss did not alter the incidence of an anastomotic leak (estimate = 0.001, p = 0.086), nor did it affect the length of hospitalization (estimate = 0.0001, p = 0.351). CONCLUSIONS In accordance to the findings of our study, we suggest that a standardized, more restrictive fluid management might be beneficial in patients undergoing RALP. In older patients this measure would be able to shorten the length of hospitalization and to decrease the incidence of anastomosis leakage as a major complication