4,269 research outputs found
Resource contrast in patterned peatlands increases along a climatic gradient
Copyright by the Ecological Society of America 2010, for personal or educational use only. Article is available at <http://dx.doi.org/10.1890/09-1313.1
Outcomes of total hip arthroplasty, as a salvage procedure, following failed internal fixation of intracapsular fractures of the femoral neck: a systematic review and meta-analysis.
AIMS: The optimal management of intracapsular fractures of the femoral neck in independently mobile patients remains open to debate. Successful fixation obviates the limitations of arthroplasty for this group of patients. However, with fixation failure rates as high as 30%, the outcome of revision surgery to salvage total hip arthroplasty (THA) must be considered. We carried out a systematic review to compare the outcomes of salvage THA and primary THA for intracapsular fractures of the femoral neck. PATIENTS AND METHODS: We performed a Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) compliant systematic review, using the PubMed, EMBASE and Cochrane libraries databases. A meta-analysis was performed where possible, and a narrative synthesis when a meta-analysis was not possible. RESULTS: Our analyses revealed a significantly increased risk of complications including deep infection, early dislocation and peri-prosthetic fracture with salvage THA when compared with primary THA for an intracapsular fracture of the femoral neck (overall risk ratio of 3.15). Functional outcomes assessment using EuroQoL (EQ)-5D were not significantly different (p = 0.3). CONCLUSION: Salvage THA carries a significantly higher risk of complications than primary THA for intracapsular fractured neck of femur. Current literature is still lacking well designed studies to provide a full answer to the question. TAKE HOME MESSAGE: Salvage THA is associated with more complications than primary THA for intracapsular neck of femur fractures
D=3, N=8 conformal supergravity and the Dragon window
We give a superspace description of D=3, N=8 supergravity. The formulation is
off-shell in the sense that the equations of motion are not implied by the
superspace constraints (but an action principle is not given). The multiplet
structure is unconventional, which we connect to the existence of a "Dragon
window", that is modules occurring in the supercurvature but not in the
supertorsion. According to Dragon's theorem this cannot happen above three
dimensions. We clarify the relevance of this window for going on the conformal
shell, and discuss some aspects of coupling to conformal matter.Comment: plain tex, 24 pp v2: minor change
Airfoil data sensitivity analysis for actuator disc simulations used in wind turbine applications
To analyse the sensitivity of blade geometry and airfoil characteristics on the prediction of performance characteristics of wind farms, large-eddy simulations using an actuator disc (ACD) method are performed for three different blade/airfoil configurations. The aim of the study is to determine how the mean characteristics of wake flow, mean power production and thrust depend on the choice of airfoil data and blade geometry. In order to simulate realistic conditions, pre-generated turbulence and wind shear are imposed in the computational domain. Using three different turbulence intensities and varying the spacing between the turbines, the flow around 4-8 aligned turbines is simulated. The analysis is based on normalized mean streamwise velocity, turbulence intensity, relative mean power production and thrust. From the computations it can be concluded that the actual airfoil characteristics and blade geometry only are of importance at very low inflow turbulence. At realistic turbulence conditions for an atmospheric boundary layer the specific blade characteristics play an minor role on power performance and the resulting wake characteristics. The results therefore give a hint that the choice of airfoil data in ACD simulations is not crucial if the intention of the simulations is to compute mean wake characteristics using a turbulent inflow
Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch
Cellular transformations which involve a significant phenotypical change of
the cell's state use bistable biochemical switches as underlying decision
systems. In this work, we aim at linking cellular decisions taking place on a
time scale of years to decades with the biochemical dynamics in signal
transduction and gene regulation, occuring on a time scale of minutes to hours.
We show that a stochastic bistable switch forms a viable biochemical mechanism
to implement decision processes on long time scales. As a case study, the
mechanism is applied to model the initiation of follicle growth in mammalian
ovaries, where the physiological time scale of follicle pool depletion is on
the order of the organism's lifespan. We construct a simple mathematical model
for this process based on experimental evidence for the involved genetic
mechanisms. Despite the underlying stochasticity, the proposed mechanism turns
out to yield reliable behavior in large populations of cells subject to the
considered decision process. Our model explains how the physiological time
constant may emerge from the intrinsic stochasticity of the underlying gene
regulatory network. Apart from ovarian follicles, the proposed mechanism may
also be of relevance for other physiological systems where cells take binary
decisions over a long time scale.Comment: 14 pages, 4 figure
Synthesis and structural analysis of the N-terminal domain of the thyroid hormone-binding protein transthyretin
Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in human serum. Misfolded forms of the protein are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases. To assist in such studies we developed a method for the solid phase synthesis of the monomeric unit of a TTR analogue and its folding to form a functional 55 kDa tetramer. The monomeric unit of the protein was chemically synthesized in three parts, comprising amino acid residues 151, 5499 and 102127, and ligated using chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of the TTRs native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, TTR antibody recognition and thyroid hormone binding. In the current study the solution structure of the first of these fragment peptides, TTR(151) is examined to determine its intrinsic propensity to form beta-sheet structure, potentially involved in amyloid fibril formation by TTR. Despite the presence of extensive beta-structure in the native form of the protein, the Nterminal fragment adopts an essentially random coil conformation in solution
High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay
BACKGROUND: Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP) that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA) of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. RESULTS: A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA) fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA). Fluorescent signal output was measured in real time and as an end point. CONCLUSIONS: Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample
A measurement of the 4He(g,n) reaction from 23 < Eg < 70 MeV
A comprehensive set of 4He(g,n) absolute cross-section measurements has been
performed at MAX-lab in Lund, Sweden. Tagged photons from 23 < Eg < 70 MeV were
directed toward a liquid 4He target, and neutrons were identified using
pulse-shape discrimination and the Time-of-flight Technique in two
liquid-scintillator detector arrays. Seven-point angular distributions have
been measured for fourteen photon energies. The results have been subjected to
complementary Transition-coefficient and Legendre-coefficient analyses. The
results are also compared to experimental data measured at comparable photon
energies as well as Recoil-Corrected Continuum Shell Model, Resonating Group
Method, and Effective Interaction Hyperspherical-Harmonic Expansion
calculations. For photon energies below 29 MeV, the angle-integrated data are
significantly larger than the values recommended by Calarco, Berman, and
Donnelly in 1983.Comment: 16 pages, 14 figures, some more revisions, submitted to Physical
Review
Higgsing M2 to D2 with gravity: N=6 chiral supergravity from topologically gauged ABJM theory
We present the higgsing of three-dimensional N=6 superconformal ABJM type
theories coupled to conformal supergravity, so called topologically gauged ABJM
theory, thus providing a gravitational extension of previous work on the
relation between N M2 and N D2-branes. The resulting N=6 supergravity theory
appears at a chiral point similar to that of three-dimensional chiral gravity
introduced recently by Li, Song and Strominger, but with the opposite sign for
the Ricci scalar term in the lagrangian. We identify the supersymmetry in the
broken phase as a particular linear combination of the supersymmetry and
special conformal supersymmetry in the original topologically gauged ABJM
theory. We also discuss the higgsing procedure in detail paying special
attention to the role played by the U(1) factors in the original ABJM model and
the U(1) introduced in the topological gauging.Comment: 53 pages, Late
- âŠ