52 research outputs found

    Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1

    Get PDF
    Subarachnoid hemorrhage (SAH) carries a 50% mortality rate. The extravasated erythrocytes that surround the brain contain heme, which, when released from damaged red blood cells, functions as a potent danger molecule that induces sterile tissue injury and organ dysfunction. Free heme is metabolized by heme oxygenase (HO), resulting in the generation of carbon monoxide (CO), a bioactive gas with potent immunomodulatory capabilities. Here, using a murine model of SAH, we demonstrated that expression of the inducible HO isoform (HO-1, encoded by Hmox1) in microglia is necessary to attenuate neuronal cell death, vasospasm, impaired cognitive function, and clearance of cerebral blood burden. Initiation of CO inhalation after SAH rescued the absence of microglial HO-1 and reduced injury by enhancing erythrophagocytosis. Evaluation of correlative human data revealed that patients with SAH have markedly higher HO-1 activity in cerebrospinal fluid (CSF) compared with that in patients with unruptured cerebral aneurysms. Furthermore, cisternal hematoma volume correlated with HO-1 activity and cytokine expression in the CSF of these patients. Collectively, we found that microglial HO-1 and the generation of CO are essential for effective elimination of blood and heme after SAH that otherwise leads to neuronal injury and cognitive dysfunction. Administration of CO may have potential as a therapeutic modality in patients with ruptured cerebral aneurysms

    Predictive markers related to local and systemic inflammation in severe COVID-19-associated ARDS: a prospective single-center analysis

    No full text
    Abstract Background As the COVID-19 pandemic strains healthcare systems worldwide, finding predictive markers of severe courses remains urgent. Most research so far was limited to selective questions hindering general assumptions for short- and long-term outcome. Methods In this prospective single-center biomarker study, 47 blood- and 21 bronchoalveolar lavage (BAL) samples were collected from 47 COVID-19 intensive care unit (ICU) patients upon admission. Expression of inflammatory markers toll-like receptor 3 (TLR3), heme oxygenase-1 (HO-1), interleukin (IL)-6, IL-8, leukocyte counts, procalcitonin (PCT) and carboxyhemoglobin (CO-Hb) was compared to clinical course. Clinical assessment comprised acute local organ damage, acute systemic damage, mortality and outcome after 6 months. Results PCT correlated with acute systemic damage and was the best predictor for quality of life (QoL) after 6 months (r = − 0.4647, p = 0.0338). Systemic TLR3 negatively correlated with impaired lung function (ECMO/ECLS: r = − 0.3810, p = 0.0107) and neurological short- (RASS mean: r = 0.4474, p = 0.0023) and long-term outcome (mRS after 6 m: r = − 0.3184, p = 0.0352). Systemic IL-8 correlated with impaired lung function (ECMO/ECLS: r = 0.3784, p = 0.0161) and neurological involvement (RASS mean: r = − 0.5132, p = 0.0007). IL-6 in BAL correlated better to the clinical course than systemic IL-6. Using three multivariate regression models, we describe prediction models for local and systemic damage as well as QoL. CO-Hb mean and max were associated with higher mortality. Conclusions Our predictive models using the combination of Charlson Comorbidity Index, sex, procalcitonin, systemic TLR3 expression and IL-6 and IL-8 in BAL were able to describe a broad range of clinically relevant outcomes in patients with severe COVID-19-associated ARDS. Using these models might proof useful in risk stratification and predicting disease course in the future. Trial registration The trial was registered with the German Clinical Trials Register (Trial-ID DRKS00021522, registered 22/04/2020)

    Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats

    No full text
    Retinal ischemia and reperfusion injuries (IRI) permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC) of the rat's eye.IRI was performed on the left eyes of rats (n = 8) with or without inhaled Argon postconditioning (25, 50 and 75 Vol%) for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours). Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA.IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001). Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01), as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001). Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%.Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon's possible role as a therapeutic option

    Temporal Expression Pattern of Hemoxygenase-1 Expression and Its Association with Vasospasm and Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage

    No full text
    Background!#!Red blood cell-induced cerebral inflammation and toxicity has been shown to be attenuated by induction of the heme-catalyzing enzyme, hemoxygenase-1 (HO-1), in animal models of subarachnoid hemorrhage (SAH). Although inflammatory mechanisms leading to secondary neuronal injury in SAH are becoming increasingly well understood, markers of cerebral inflammation have so far not been implemented in clinical prediction models of SAH.!##!Methods!#!In this biomarker observational study, HO-1 messenger ribonucleic acid (mRNA) expression levels were determined in cerebrospinal fluid (CSF) and blood of 66 patients with aneurysmal SAH on days 1, 7, and 14 after the SAH event. HO-1 mRNA expression was determined via real time polymerase chain reaction (PCR), and relative expression changes were quantified in comparison with expression levels in nonhemorrhagic control CSF. Subarachnoid blood burden, as well as presence of vasospasm and delayed cerebral ischemia (DCI), were recorded. Short and long-term clinical outcomes were assessed using the Modified Rankin Scale at discharge and 1 year after the SAH event.!##!Results!#!CSF HO-1 expression levels showed a significant increase over the 14-day observation period (p &amp;lt; 0.001, F = 22.53) and correlated with intracranial hematoma burden (ρ = 0.349, p = 0.025). In multivariate analyses, CSF HO-1 expression levels did not reach significance as independent predictors of outcome. Vasospasm on computed tomographic angiography was associated with lower CSF HO-1 expression levels on day 7 after SAH (n = 53, p = 0.010), whereas patients with DCI showed higher CSF HO-1 expression levels on day 14 after SAH (n = 21, p = 0.009).!##!Conclusions!#!HO-1 expression in CSF in patients with SAH follows a distinct temporal induction pattern and is dependent on intracranial hematoma burden. CSF HO-1 expression was unable to predict functional outcome. Associations of early low HO-1 expression with vasospasm and late elevated HO-1 expression with DCI may point to detrimental effects of late HO-1 induction, warranting the need for further investigation in a larger study population

    The anti-inflammatory effects of E-α-(p-methoxyphenyl)-2′,3,4,4′-tetramethoxychalcone are mediated via HO-1 induction

    No full text
    Inflammation plays a central role in the pathophysiology of many diseases. The inducible enzyme heme oxygenase-1 (HO-1) protects cells against inflammation and can be induced by electrophilic compounds like the chalcones (1,3-diphenylprop-2-enones) from the class of alpha,beta-unsaturated carbonyl compounds. We hypothesized that the synthetic chalcone E-alpha-(p-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone (E-alpha-p-OMe-C6H4-TMC) exerts anti-inflammatory effects in RAW264.7, Jurkat lymphocytes and HK-2 cells via HO-1 induction. RAW264.7 cells were treated with lipopolysaccharide prior to E-alpha-p-OMe-C6H4-TMC treatment. Subsequently, HO-1 protein induction and activity were analyzed, as well as expression of pro- and anti-inflammatory mediators, transcription factors and mitogen-activated protein kinases to evaluate the possible molecular mechanism. These results were confirmed in human cell lines (Jurkat T-lymphocytes and HK-2 epithelial cells). We found that the E-alpha-p-OMe-C6H4-TMC exerts significant anti-inflammatory effects in a dose dependent manner, showing no toxic effects in LPS-treated RAW264.7 macrophages. E-alpha-p-OMe-C6H4-TMC induced HO-1 and SOD-1 protein expression and HO-1 enzyme activity, reduced the upregulation of COX-2 and 1NOS, while inducing the translocation of Nrf2. NF-kappa B activity was attenuated following E-alpha-p-OMe-C6H4-TMC treatment accompanied by the downregulation of proinflammatory cytokines IL-1 beta, IL-6 and MCP-1. Pretreatment with E-alpha-p-OMe-C6H4-TMC revealed significant changes in phosphorylation of ERK and p38, but not JNK. These anti-inflammatory effects of E-alpha-p-OMe-C6H4-TMC were approved in Jurkat and HK-2 cells, furthermore revealing a downregulation of IL-8 and IL-10. In conclusion, it is tempting to speculate about E-alpha-p-OMe-C6H4-TMC as a new and non-toxic agent, inducing HO-1 in cells. This opens up new opportunities regarding the development of therapeutic agents using beneficial effects of HO-1 and its products. (C) 2016 Elsevier B.V. All rights reserved
    corecore