34 research outputs found

    A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence

    Get PDF
    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality

    Hybrid copula mixed models for combining case-control and cohort studies in meta-analysis of diagnostic tests

    Get PDF
    Copula mixed models for trivariate (or bivariate) meta-analysis of diagnostic test accuracy studies accounting (or not) for disease prevalence have been proposed in the biostatistics literature to synthesize information. However, many systematic reviews often include case-control and cohort studies, so one can either focus on the bivariate meta-analysis of the case-control studies or the trivariate meta-analysis of the cohort studies, as only the latter contains information on disease prevalence. In order to remedy this situation of wasting data we propose a hybrid copula mixed model via a combination of the bivariate and trivariate copula mixed model for the data from the case-control studies and cohort studies, respectively. Hence, this hybrid model can account for study design and also due to its generality can deal with dependence in the joint tails. We apply the proposed hybrid copula mixed model to a review of the performance of contemporary diagnostic imaging modalities for detecting metastases in patients with melanoma

    On composite likelihood in bivariate meta-analysis of diagnostic test accuracy studies

    Get PDF
    The composite likelihood (CL) is amongst the computational methods used for estimation of the generalized linear mixed model (GLMM) in the context of bivariate meta-analysis of diagnostic test accuracy studies. Its advantage is that the likelihood can be derived conveniently under the assumption of independence between the random effects, but there has not been a clear analysis of the merit or necessity of this method. For synthesis of diagnostic test accuracy studies, a copula mixed model has been proposed in the biostatistics literature. This general model includes the GLMM as a special case and can also allow for flexible dependence modelling, different from assuming simple linear correlation structures, normality and tail independence in the joint tails. A maximum likelihood (ML) method, which is based on evaluating the bi-dimensional integrals of the likelihood with quadrature methods has been proposed, and in fact it eases any computational difficulty that might be caused by the double integral in the likelihood function. Both methods are thoroughly examined with extensive simulations and illustrated with data of a published meta-analysis. It is shown that the ML method has non-convergence issues or computational difficulties and at the same time allows estimation of the dependence between study-specific sensitivity and specificity and thus prediction via summary receiver operating curves

    Factor copula models for item response data

    Get PDF
    Factor or conditional independence models based on copulas are proposed for multivariate discrete data such as item responses. The factor copula models have interpretations of latent maxima/minima (in comparison with latent means) and can lead to more probability in the joint upper or lower tail compared with factor models based on the discretized multivariate normal distribution (or multidimensional normal ogive model). Details on maximum likelihood estimation of parameters for the factor copula model are given, as well as analysis of the behavior of the log-likelihood. Our general methodology is illustrated with several item response data sets, and it is shown that there is a substantial improvement on existing models both conceptually and in fit to data

    Analysis of paediatric visual acuity using Bayesian copula models with sinh-arcsinh marginal densities

    Get PDF
    We analyse paediatric ophthalmic data from a large sample of children aged between 3 and 8 years. We modify the Bayesian additive conditional bivariate copula regression model of Klein and Kneib [1] by using sinh-arcsinh marginal densities with location, scale and shape parameters that depend smoothly on a covariate. We perform Bayesian inference about the unknown quantities of our model using a specially tailored Markov chain Monte Carlo algorithm. We gain new insights about the processes which determine transformations in visual acuity with respect to age, including the nature of joint changes in both eyes as modelled with the age-related copula dependence parameter. We analyse posterior predictive distributions to identify children with unusual sight characteristics, distinguishing those who are bivariate, but not univariate outliers. In this way we provide an innovative tool that enables clinicians to identify children with unusual sight who may otherwise be missed. We compare our simultaneous Bayesian method with the two-step frequentist generalized additive modelling approach of Vatter and Chavez-Demoulin [2]

    Weighted scores method for regression models with dependent data

    Get PDF
    There are copula-based statistical models in the literature for regression with dependent data such as clustered and longitudinal overdispersed counts, for which parameter estimation and inference are straightforward. For situations where the main interest is in the regression and other univariate parameters and not the dependence, we propose a “weighted scores method”, which is based on weighting score functions of the univariate margins. The weight matrices are obtained initially fitting a discretized multivariate normal distribution, which admits a wide range of dependence. The general methodology is applied to negative binomial regression models. Asymptotic and small-sample efficiency calculations show that our method is robust and nearly as efficient as maximum likelihood for fully specified copula models. An illustrative example is given to show the use of our weighted scores method to analyze utilization of health care based on family characteristics

    Modeling multivariate count data using copulas

    No full text
    Multivariate count data occur in several different disciplines. However, existing models do not offer great flexibility for dependence modeling. Models based on copulas nowadays are widely used for continuous data dependence modeling. Modeling count data via copulas is still in its infancy; see the recent article of Genest and NeĆĄlehovĂĄ (2007). A series of different copula models providing various residual dependence structures are considered for vectors of count response variables whose marginal distributions depend on covariates through negative binomial regressions. A real data application related to the number of purchases of different products is provided
    corecore