6,118 research outputs found
Classical and Non-Relativistic Limits of a Lorentz-Invariant Bohmian Model for a System of Spinless Particles
A completely Lorentz-invariant Bohmian model has been proposed recently for
the case of a system of non-interacting spinless particles, obeying
Klein-Gordon equations. It is based on a multi-temporal formalism and on the
idea of treating the squared norm of the wave function as a space-time
probability density. The particle's configurations evolve in space-time in
terms of a parameter {\sigma}, with dimensions of time. In this work this model
is further analyzed and extended to the case of an interaction with an external
electromagnetic field. The physical meaning of {\sigma} is explored. Two
special situations are studied in depth: (1) the classical limit, where the
Einsteinian Mechanics of Special Relativity is recovered and the parameter
{\sigma} is shown to tend to the particle's proper time; and (2) the
non-relativistic limit, where it is obtained a model very similar to the usual
non-relativistic Bohmian Mechanics but with the time of the frame of reference
replaced by {\sigma} as the dynamical temporal parameter
Out-Of-Focus Holography at the Green Bank Telescope
We describe phase-retrieval holography measurements of the 100-m diameter
Green Bank Telescope using astronomical sources and an astronomical receiver
operating at a wavelength of 7 mm. We use the technique with parameterization
of the aperture in terms of Zernike polynomials and employing a large defocus,
as described by Nikolic, Hills & Richer (2006). Individual measurements take
around 25 minutes and from the resulting beam maps (which have peak signal to
noise ratios of 200:1) we show that it is possible to produce low-resolution
maps of the wavefront errors with accuracy around a hundredth of a wavelength.
Using such measurements over a wide range of elevations, we have calculated a
model for the wavefront-errors due to the uncompensated gravitational
deformation of the telescope. This model produces a significant improvement at
low elevations, where these errors are expected to be the largest; after
applying the model, the aperture efficiency is largely independent of
elevation. We have also demonstrated that the technique can be used to measure
and largely correct for thermal deformations of the antenna, which often exceed
the uncompensated gravitational deformations during daytime observing.
We conclude that the aberrations induced by gravity and thermal effects are
large-scale and the technique used here is particularly suitable for measuring
such deformations in large millimetre wave radio telescopes.Comment: 10 pages, 7 figures (accepted by Astronomy & Astrophysics
Design of generalized Chebyshev lumped element filters by computer optimisation
A numerical method for the optimization of symmetrical lumped element low-pass and band-pass filters with a generalized Chebyshev response is considered. By exploiting the fact that a network based on generalized Chebyshev prototype has a prescribed number of turning points in the insertion loss and an identical number of independent parameters which can be assigned as variables to adjust their levels, the method gives fast convergence
Noncommutativity and nonassociativity of type II superstring with coordinate dependent RR field -- the general case
In this paper we consider non-commutativity that arises from T-duality of
bosonic coordinates of type II superstring in presence of coordinate dependent
Ramond-Ramond field. Action with such choice of the background fields is not
translational invariant. Consequently, we will employ generalization of Buscher
procedure that can be applied to cases that have coordinate dependent fields
and that do not possess translational isometry. Bosonic part of newly obtained
T-dual theory is non-local and defined in non-geometric double space spanned by
Lagrange multipliers and double coordinate . We will
apply Buscher procedure once more on T-dual theory to check if original theory
can be salvaged. Finally, we will use T-dual transformation laws along with
Poisson brackets of original theory to derive Poisson bracket structure of
T-dual theory.Comment: arXiv admin note: substantial text overlap with arXiv:2203.1165
ALMA Temporal Phase Stability and the Effectiveness of Water Vapor Radiometer
Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest
mm/submm interferometer, and currently the Early Science is ongoing, together
with the commissioning and science verification (CSV). Here we present a study
of the temporal phase stability of the entire ALMA system from antennas to the
correlator. We verified the temporal phase stability of ALMA using data, taken
during the last two years of CSV activities. The data consist of integrations
on strong point sources (i.e., bright quasars) at various frequency bands, and
at various baseline lengths (up to 600 m). From the observations of strong
quasars for a long time (from a few tens of minutes, up to an hour), we derived
the 2-point Allan Standard Deviation after the atmospheric phase correction
using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna,
and confirmed that the phase stability of all the baselines reached the ALMA
specification. Since we applied the WVR phase correction to all the data
mentioned above, we also studied the effectiveness of the WVR phase correction
at various frequencies, baseline lengths, and weather conditions. The phase
stability often improves a factor of 2 - 3 after the correction, and sometimes
a factor of 7 improvement can be obtained. However, the corrected data still
displays an increasing phase fluctuation as a function of baseline length,
suggesting that the dry component (e.g., N2 and O2) in the atmosphere also
contributes the phase fluctuation in the data, although the imperfection of the
WVR phase correction cannot be ruled out at this moment.Comment: Proc. SPIE 8444-125, in press (7 pages, 4 figures, 1 table
- …