4 research outputs found

    An evaluation of prospective motion correction (PMC) for high resolution quantitative MRI

    Get PDF
    Quantitative imaging aims to provide in vivo neuroimaging biomarkers with high research and diagnostic value that are sensitive to underlying tissue microstructure. In order to use these data to examine intra-cortical differences or to define boundaries between different myelo-architectural areas, high resolution data are required. The quality of such measurements is degraded in the presence of motion hindering insight into brain microstructure. Correction schemes are therefore vital for high resolution, whole brain coverage approaches that have long acquisition times and greater sensitivity to motion. Here we evaluate the use of prospective motion correction (PMC) via an optical tracking system to counter intra-scan motion in a high resolution (800 μm isotropic) multi-parameter mapping (MPM) protocol. Data were acquired on six volunteers using a 2 × 2 factorial design permuting the following conditions: PMC on/off and motion/no motion. In the presence of head motion, PMC-based motion correction considerably improved the quality of the maps as reflected by fewer visible artifacts and improved consistency. The precision of the maps, parameterized through the coefficient of variation in cortical sub-regions, showed improvements of 11–25% in the presence of deliberate head motion. Importantly, in the absence of motion the PMC system did not introduce extraneous artifacts into the quantitative maps. The PMC system based on optical tracking offers a robust approach to minimizing motion artifacts in quantitative anatomical imaging without extending scan times. Such a robust motion correction scheme is crucial in order to achieve the ultra-high resolution required of quantitative imaging for cutting edge in vivo histology applications

    High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing

    Get PDF
    Diffusion Kurtosis Imaging (DKI) is more sensitive to microstructural differences and can be related to more specific micro-scale metrics (e.g. intra-axonal volume fraction) than diffusion tensor imaging (DTI), offering exceptional potential for clinical diagnosis and research into the white and gray matter. Currently DKI is acquired only at low spatial resolution (2-3 mm isotropic), because of the lower signal-to-noise ratio (SNR) and higher artifact level associated with the technically more demanding DKI. Higher spatial resolution of about 1mm is required for the characterization of fine white matter pathways or cortical microstructure. We used restricted-field-of-view imaging in combination with advanced post-processing methods to enable unprecedented high-quality, high-resolution DKI (1.2 mm isotropic) on a clinical 3T scanner. Post-processing was advanced by developing a novel method for Retrospective Eddy current and Motion ArtifacT Correction in High-resolution, multi-shell diffusion data (REMATCH). Furthermore, we applied a powerful edge preserving denoising method, denoted as multi-shell orientation-position-adaptive smoothing (msPOAS). We demonstrated the feasibility of high-quality, high-resolution DKI and its potential for delineating highly myelinated fiber pathways in the motor cortex. REMATCH performs robustly even at the low SNR level of high-resolution DKI, where standard EC and motion correction failed (i.e. produced incorrectly aligned images) and thus biased the diffusion model fit. We showed that the combination of REMATCH and msPOAS increased the contrast between gray and white matter in mean kurtosis (MK) maps by about 35% and at the same time preserves the original distribution of MK values, whereas standard Gaussian smoothing strongly biases the distribution

    Quantitative multi-parameter mapping of R1, PD(*), MT, and R2(*) at 3T: a multi-center validation.

    Get PDF
    Multi-center studies using magnetic resonance imaging facilitate studying small effect sizes, global population variance and rare diseases. The reliability and sensitivity of these multi-center studies crucially depend on the comparability of the data generated at different sites and time points. The level of inter-site comparability is still controversial for conventional anatomical T1-weighted MRI data. Quantitative multi-parameter mapping (MPM) was designed to provide MR parameter measures that are comparable across sites and time points, i.e., 1 mm high-resolution maps of the longitudinal relaxation rate (R1 = 1/T1), effective proton density (PD(*)), magnetization transfer saturation (MT) and effective transverse relaxation rate (R2(*) = 1/T2(*)). MPM was validated at 3T for use in multi-center studies by scanning five volunteers at three different sites. We determined the inter-site bias, inter-site and intra-site coefficient of variation (CoV) for typical morphometric measures [i.e., gray matter (GM) probability maps used in voxel-based morphometry] and the four quantitative parameters. The inter-site bias and CoV were smaller than 3.1 and 8%, respectively, except for the inter-site CoV of R2(*) (<20%). The GM probability maps based on the MT parameter maps had a 14% higher inter-site reproducibility than maps based on conventional T1-weighted images. The low inter-site bias and variance in the parameters and derived GM probability maps confirm the high comparability of the quantitative maps across sites and time points. The reliability, short acquisition time, high resolution and the detailed insights into the brain microstructure provided by MPM makes it an efficient tool for multi-center imaging studies

    Objective Bayesian fMRI analysis: A pilot study in different clinical environments

    Get PDF
    Functional MRI (fMRI) used for neurosurgical planning delineates functionally eloquent brain areas by time-series analysis of task-induced BOLD signal changes. Commonly used frequentist statistics protect against false positive results based on a p-value threshold. In surgical planning, false negative results are equally if not more harmful, potentially masking true brain activity leading to erroneous resection of eloquent regions. Bayesian statistics provides an alternative framework, categorizing areas as activated, deactivated, non-activated or with low statistical confidence. This approach has not yet found wide clinical application partly due to the lack of a method to objectively define an effect size threshold. We implemented a Bayesian analysis framework for neurosurgical planning fMRI. It entails an automated effect-size threshold selection method for posterior probability maps accounting for inter-individual BOLD response differences, which was calibrated based on the frequentist results maps thresholded by two clinical experts. We compared Bayesian and frequentist analysis of passive-motor fMRI data from 10 healthy volunteers measured on a pre-operative 3T and an intra-operative 1.5T MRI scanner. As a clinical case study, we tested passive motor task activation in a brain tumor patient at 3T under clinical conditions. With our novel effect size threshold method, the Bayesian analysis revealed regions of all four categories in the 3T data. Activated region foci and extent were consistent with the frequentist analysis results. In the lower signal-to-noise ratio 1.5T intra-operative scanner data, Bayesian analysis provided improved brain-activation detection sensitivity compared with the frequentist analysis, albeit the spatial extents of the activations were smaller than at 3T. Bayesian analysis of fMRI data using operator-independent effect size threshold selection may improve the sensitivity and certainty of information available to guide neurosurgery
    corecore