1,353 research outputs found
Knapsack Problems in Groups
We generalize the classical knapsack and subset sum problems to arbitrary
groups and study the computational complexity of these new problems. We show
that these problems, as well as the bounded submonoid membership problem, are
P-time decidable in hyperbolic groups and give various examples of finitely
presented groups where the subset sum problem is NP-complete.Comment: 28 pages, 12 figure
Knapsack problems in products of groups
The classic knapsack and related problems have natural generalizations to
arbitrary (non-commutative) groups, collectively called knapsack-type problems
in groups. We study the effect of free and direct products on their time
complexity. We show that free products in certain sense preserve time
complexity of knapsack-type problems, while direct products may amplify it. Our
methods allow to obtain complexity results for rational subset membership
problem in amalgamated free products over finite subgroups.Comment: 15 pages, 5 figures. Updated to include more general results, mostly
in Section
- …