45 research outputs found

    The BCR-ABL1 Kinase Bypasses Selection for the Expression of a Pre–B Cell Receptor in Pre–B Acute Lymphoblastic Leukemia Cells

    Get PDF
    The BCR-ABL1 kinase expressed in acute lymphoblastic leukemia (ALL) drives malignant transformation of human pre–B cells. Comparing genome-wide gene expression profiles of BCR-ABL1+ pre–B ALL and normal bone marrow pre–B cells by serial analysis of gene expression, many genes involved in pre–B cell receptor signaling are silenced in the leukemia cells. Although normal pre–B cells are selected for the expression of a functional pre–B cell receptor, BCR-ABL1+ ALL cells mostly do not harbor a productively rearranged IGH allele. In these cases, we identified traces of secondary VH gene rearrangements, which may have rendered an initially productive VH region gene nonfunctional. Even BCR-ABL1+ ALL cells harboring a functional VH region gene are unresponsive to pre–B cell receptor engagement and exhibit autonomous oscillatory Ca2+ signaling activity. Conversely, leukemia subclones surviving inhibition of BCR-ABL1 by STI571 restore responsiveness to antigen receptor engagement and differentiate into immature B cells expressing immunoglobulin light chains. BCR-ABL1 kinase activity is linked to defective pre–B cell receptor signaling and the expression of a truncated isoform of the pre–B cell receptor–associated linker molecule SLP65. Also in primary leukemia cells, truncated SLP65 is expressed before but not after treatment of the patients with STI571. We conclude that inhibition of BCR-ABL1 reconstitutes selection for leukemia cells expressing a functional (pre–) B cell receptor

    Plasmodium Infection Promotes Genomic Instability and AID-Dependent B Cell Lymphoma

    Get PDF
    SummaryChronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt’s lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by which mechanism, remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis, we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments in which B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage, leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells.PaperCli

    A New Human Somatic Stem Cell from Placental Cord Blood with Intrinsic Pluripotent Differentiation Potential

    Get PDF
    Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 1015 cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and hematopoietic and neural cells including astrocytes and neurons that express neurofilament, sodium channel protein, and various neurotransmitter phenotypes. Stereotactic implantation of USSCs into intact adult rat brain revealed that human Tau-positive cells persisted for up to 3 mo and showed migratory activity and a typical neuron-like morphology. In vivo differentiation of USSCs along mesodermal and endodermal pathways was demonstrated in animal models. Bony reconstitution was observed after transplantation of USSC-loaded calcium phosphate cylinders in nude rat femurs. Chondrogenesis occurred after transplanting cell-loaded gelfoam sponges into nude mice. Transplantation of USSCs in a noninjury model, the preimmune fetal sheep, resulted in up to 5% human hematopoietic engraftment. More than 20% albumin-producing human parenchymal hepatic cells with absence of cell fusion and substantial numbers of human cardiomyocytes in both atria and ventricles of the sheep heart were detected many months after USSC transplantation. No tumor formation was observed in any of these animals

    Mimicry of a constitutively active pre–B cell receptor in acute lymphoblastic leukemia cells

    Get PDF
    Pre–B cells undergo apoptosis unless they are rescued by pre–B cell receptor–dependent survival signals. We previously showed that the BCR-ABL1 kinase that is expressed in pre–B lymphoblastic leukemia bypasses selection for pre–B cell receptor–dependent survival signals. Investigating possible interference of BCR-ABL1 with pre–B cell receptor signaling, we found that neither SYK nor SLP65 can be phosphorylated in response to pre–B cell receptor engagement. Instead, Bruton's tyrosine kinase (BTK) is constitutively phosphorylated by BCR-ABL1. Activated BTK is essential for survival signals that otherwise would arise from the pre–B cell receptor, including activation of PLCγ1, autonomous Ca(2+) signaling, STAT5-phosphorylation, and up-regulation of BCLX (L). Inhibition of BTK activity specifically induces apoptosis in BCR-ABL1 (+) leukemia cells to a similar extent as inhibition of BCR-ABL1 kinase activity itself. However, BCR-ABL1 cannot directly bind to full-length BTK. Instead, BCR-ABL1 induces the expression of a truncated splice variant of BTK that acts as a linker between the two kinases. As opposed to full-length BTK, truncated BTK lacks kinase activity yet can bind to BCR-ABL1 through its SRC-homology domain 3. Acting as a linker, truncated BTK enables BCR-ABL1–dependent activation of full-length BTK, which initiates downstream survival signals and mimics a constitutively active pre–B cell receptor

    Visceral adipose tissue immune homeostasis is regulated by the crosstalk between adipocytes and dendritic cell subsets

    Get PDF
    Visceral adipose tissue (VAT) has multiple roles in orchestrating whole-body energy homeostasis. In addition, VAT is now considered an immune site harboring an array of innate and adaptive immune cells with a direct role in immune surveillance and host defense. We report that conventional dendritic cells (cDCs) in VAT acquire a tolerogenic phenotype through upregulation of pathways involved in adipocyte differentiation. While activation of the Wnt/β-catenin pathway in cDC1 DCs induces IL-10 production, upregulation of the PPARγ pathway in cDC2 DCs directly suppresses their activation. Combined, they promote an anti-inflammatory milieu in vivo delaying the onset of obesity-induced chronic inflammation and insulin resistance. Under long-term over-nutrition, changes in adipocyte biology curtail β-catenin and PPARγ activation, contributing to VAT inflammation

    53BP1 regulates DNA resection and the choice between classical and alternative end joining during class switch recombination

    Get PDF
    Class switch recombination (CSR) diversifies antibodies by joining highly repetitive DNA elements, which are separated by 60–200 kbp. CSR is initiated by activation-induced cytidine deaminase, an enzyme that produces multiple DNA double-strand breaks (DSBs) in switch regions. Switch regions are joined by a mechanism that requires an intact DNA damage response and classical or alternative nonhomologous end joining (A-NHEJ). Among the DNA damage response factors, 53BP1 has the most profound effect on CSR. We explore the role of 53BP1 in intrachromosomal DNA repair using I-SceI to introduce paired DSBs in the IgH locus. We find that the absence of 53BP1 results in an ataxia telangiectasia mutated–dependent increase in DNA end resection and that resected DNA is preferentially repaired by microhomology-mediated A-NHEJ. We propose that 53BP1 favors long-range CSR in part by protecting DNA ends against resection, which prevents A-NHEJ–dependent short-range rejoining of intra–switch region DSBs
    corecore