359 research outputs found

    Metastable helium molecules as tracers in superfluid liquid 4^{4}He

    Get PDF
    Metastable helium molecules generated in a discharge near a sharp tungsten tip operated in either pulsed mode or continuous field-emission mode in superfluid liquid 4^{4}He are imaged using a laser-induced-fluorescence technique. By pulsing the tip, a small cloud of He2_{2}^{*} molecules is produced. At 2.0 K, the molecules in the liquid follow the motion of the normal fluid. We can determine the normal-fluid velocity in a heat-induced counterflow by tracing the position of a single molecule cloud. As we run the tip in continuous field-emission mode, a normal-fluid jet from the tip is generated and molecules are entrained in the jet. A focused 910 nm pump laser pulse is used to drive a small group of molecules to the vibrational a(1)a(1) state. Subsequent imaging of the tagged a(1)a(1) molecules with an expanded 925 nm probe laser pulse allows us to measure the velocity of the normal fluid. The techniques we developed demonstrate for the first time the ability to trace the normal-fluid component in superfluid helium using angstrom-sized particles.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Let

    Scintillation yield and time dependence from electronic and nuclear recoils in liquid neon

    Full text link
    We have performed measurements of scintillation light in liquid neon, observing a signal yield in our detector as high as (3.5 ±\pm 0.4) photoelectrons/keV. We measure pulse shape discrimination efficiency between electronic and nuclear recoils in liquid neon from 50 and 300 keV nuclear recoil energy. We also measure the \leff\, parameter in liquid neon between 30 and 370 keV nuclear recoil energy, observing an average \leff=0.24=0.24 above 50 keV. We observe a dependence of the scintillation time distribution and signal yield on the pressure and temperature of the liquid neon.Comment: 18 pages, 23 figures, v2 updated to reflect published versio

    Calibration of liquid argon and neon detectors with 83Krm^{83}Kr^m

    Full text link
    We report results from tests of 83^{83}Krm^{\mathrm{m}}, as a calibration source in liquid argon and liquid neon. 83^{83}Krm^{\mathrm{m}} atoms are produced in the decay of 83^{83}Rb, and a clear 83^{83}Krm^{\mathrm{m}} scintillation peak at 41.5 keV appears in both liquids when filling our detector through a piece of zeolite coated with 83^{83}Rb. Based on this scintillation peak, we observe 6.0 photoelectrons/keV in liquid argon with a resolution of 6% (σ\sigma/E) and 3.0 photoelectrons/keV in liquid neon with a resolution of 19% (σ\sigma/E). The observed peak intensity subsequently decays with the 83^{83}Krm^{\mathrm{m}} half-life after stopping the fill, and we find evidence that the spatial location of 83^{83}Krm^{\mathrm{m}} atoms in the chamber can be resolved. 83^{83}Krm^{\mathrm{m}} will be a useful calibration source for liquid argon and neon dark matter and solar neutrino detectors.Comment: 7 pages, 12 figure

    Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

    Get PDF
    The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83m^{83m}Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U

    Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    Get PDF
    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 +/- 5 ppm to 1100 +/- 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 +/- 0.1 photoelectrons/keV improved to 5.0 +/- 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 +/- 0.2)% ({\sigma}) to (3.5 +/- 0.2)% ({\sigma}) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component

    Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments

    Full text link
    The recently developed technique of Cyclotron Radiation Emission Spectroscopy (CRES) uses frequency information from the cyclotron motion of an electron in a magnetic bottle to infer its kinetic energy. Here we derive the expected radio frequency signal from an electron in a waveguide CRES apparatus from first principles. We demonstrate that the frequency-domain signal is rich in information about the electron's kinematic parameters, and extract a set of measurables that in a suitably designed system are sufficient for disentangling the electron's kinetic energy from the rest of its kinematic features. This lays the groundwork for high-resolution energy measurements in future CRES experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure

    Scintillation and charge extraction from the tracks of energetic electrons in superfluid helium-4

    Full text link
    An energetic electron passing through liquid helium causes ionization along its track. The ionized electrons quickly recombine with the resulting positive ions, which leads to the production of prompt scintillation light. By applying appropriate electric fields, some of the ionized electrons can be separated from their parent ions. The fraction of the ionized electrons extracted in a given applied field depends on the separation distance between the electrons and the ions. We report the determination of the mean electron-ion separation distance for charge pairs produced along the tracks of beta particles in superfluid helium at 1.5 K by studying the quenching of the scintillation light under applied electric fields. Knowledge of this mean separation parameter will aid in the design of particle detectors that use superfluid helium as a target material.Comment: 10 pages, 8 figure

    Status of the LUX Dark Matter Search

    Full text link
    The Large Underground Xenon (LUX) dark matter search experiment is currently being deployed at the Homestake Laboratory in South Dakota. We will highlight the main elements of design which make the experiment a very strong competitor in the field of direct detection, as well as an easily scalable concept. We will also present its potential reach for supersymmetric dark matter detection, within various timeframes ranging from 1 year to 5 years or more.Comment: 4 pages, in proceedings of the SUSY09 conferenc
    corecore