275 research outputs found

    Provenance and distribution networks of the earliest bronze in the Maritime Territory (Primorye), Russian Far East

    Get PDF
    Metal artifacts from the Paleometal Epoch (ca. 1100 BC–400 AD) of the Primorye (Russian Far East) have shed new light on the introduction of the earliest bronzes into the Pacific coastal areas of prehistoric Eurasia. However, little is known about raw material circulation and the role of metal in the context of inter-regional exchange. This paper investigates 12 copper artifacts from major Paleometal settlements using alloy composition, trace elements, and lead isotopes to explore the metal sources and distribution networks. The results suggest that most objects are made of a copper-tin alloy, but some have arsenic as a significant minor element. Geologically, copper is unlikely to have come from local ore sources, but rather from the Liaoxi corridor and Liaodong Peninsula in Northeast China. This may indicate an inland route of metal trade across Northeast China or alternately, a coastal route via the northern Korean Peninsula. Archaeologically, the combined study of artifact typology and chemistry indicates two possible origins for the metal: the Upper Xiajiadian culture in Northeast China and Slab Grave culture in Mongolia/Transbaikal. Remarkably, the connection with Upper Xiajiadian communities parallels the transport route along which millet agriculture spread from Northeast China to the Primorye during the Neolithic

    Atlas of Signaling for Interpretation of Microarray Experiments

    Get PDF
    Microarray-based expression profiling of living systems is a quick and inexpensive method to obtain insights into the nature of various diseases and phenotypes. A typical microarray profile can yield hundreds or even thousands of differentially expressed genes and finding biologically plausible themes or regulatory mechanisms underlying these changes is a non-trivial and daunting task. We describe a novel approach for systems-level interpretation of microarray expression data using a manually constructed “overview” pathway depicting the main cellular signaling channels (Atlas of Signaling). Currently, the developed pathway focuses on signal transduction from surface receptors to transcription factors and further transcriptional regulation of cellular “workhorse” proteins. We show how the constructed Atlas of Signaling in combination with an enrichment analysis algorithm allows quick identification and visualization of the main signaling cascades and cellular processes affected in a gene expression profiling experiment. We validate our approach using several publicly available gene expression datasets

    Determination of critical plane and assessment of fatigue durability for multiaxial cyclic loading and arbitrary shift of phases

    No full text
    An analytical solution for the well-known fatigue criterion proposed by Papadopoulos was obtained. An arbitrary shift of phases was taken into account. Comparison between analytical, numerical solutions with experimental data was made. Computation results based on FEM were compared with assessments by the mentioned above criterion

    Designing Stable Bacillus anthracis Antigens with a View to Recombinant Anthrax Vaccine Development

    No full text
    Anthrax is a disease caused by Bacillus anthracis that affects mammals, including humans. Recombinant B. anthracis protective antigen (rPA) is the most common basis for modern anthrax vaccine candidates. However, this protein is characterised by low stability due to proteolysis and deamidation. Here, for the first time, two modification variants leading to full-size rPA stabilisation have been implemented simultaneously, through deamidation-prone asparagine residues substitution and by inactivation of proteolysis sites. Obtained modified rPA (rPA83m) has been demonstrated to be stable in various temperature conditions. Additionally, rPA1+2 containing PA domains I and II and rPA3+4 containing domains III and IV, including the same modifications, have been shown to be stable as well. These antigens can serve as the basis for a vaccine, since the protective properties of PA can be attributed to individual PA domains. The stability of each of three modified anthrax antigens has been considerably improved in compositions with tobacco mosaic virus-based spherical particles (SPs). rPA1+2/rPA3+4/rPA83m in compositions with SPs have maintained their antigenic specificity even after 40 days of incubation at +37 °C. Considering previously proven adjuvant properties and safety of SPs, their compositions with rPA83m/rPA1+2/rPA3+4 in any combinations might be suitable as a basis for new-generation anthrax vaccines

    Two approaches for the stabilization of Bacillus anthracis recombinant protective antigen

    No full text
    Anthrax is a zoonotic disease caused by the gram-positive spore-forming bacteria Bacillus anthracis. There is a need for safe, highly effective, long-term storage vaccine formulations for mass vaccination. However, the development of new subunit vaccines based on recombinant protective antigen (rPA) faces the problem of vaccine antigen instability. Here, the potential of simultaneous application of two different approaches to stabilize rPA was demonstrated. Firstly, we employed spherical particles (SPs) obtained from the tobacco mosaic virus (TMV). Previously, we had reported that SPs can serve as an adjuvant and platform for antigen presentation. In the current work, SPs were shown to increase the stability of the full-size rPA without loss of its antigenic properties. The second direction was site-specific mutagenesis of asparagine residues to avoid deamidation that causes partial protein degradation. The modified recombinant protein comprising the PA immunogenic domains 3 and 4 (rPA3 + 4) was stable during storage at 4 and 25°C. rPA3 + 4 interacts with antibodies to rPA83 both individually and as a part of a complex with SPs. The results obtained can underpin the development of a recombinant vaccine with a full-size modified rPA (with similar amino acid substitutions that stabilize the protein) and SPs

    Proteins immobilization on the surface of modified plant viral particles coated with hydrophobic polycations

    No full text
    <div><p>Two hydrophobic cations based on poly-<i>N</i>-ethyl-vinylpyridine were used to produce biologically active complexes. The complexes obtained from tobacco mosaic virus (TMV) spherical particles (SPs), hydrophobic polycation, and a model protein were stable and did not aggregate in solution, particularly at high ionic strengths. The nucleic acid-free SPs were generated by thermal remodeling of the TMV (helical rod-shaped plant virus). The model protein preserved its antigenic activity in the ternary complex (SP–polycation–protein). Immobilization of proteins on the surface of SPs coated with hydrophobic cation is a promising approach to designing biologically active complexes used in bionanotechnologies.</p></div

    Novel Universal Recombinant Rotavirus A Vaccine Candidate: Evaluation of Immunological Properties

    No full text
    Rotavirus infection is a leading cause of severe dehydrating gastroenteritis in children under 5 years of age. Although rotavirus-associated mortality has decreased considerably because of the introduction of the worldwide rotavirus vaccination, the global burden of rotavirus-associated gastroenteritis remains high. Current vaccines have a number of disadvantages; therefore, there is a need for innovative approaches in rotavirus vaccine development. In the current study, a universal recombinant rotavirus antigen (URRA) for a novel recombinant vaccine candidate against rotavirus A was obtained and characterised. This antigen included sequences of the VP8* subunit of rotavirus spike protein VP4. For the URRA, for the first time, two approaches were implemented simultaneously—the application of a highly conserved neutralising epitope and the use of the consensus of the extended protein’s fragment. The recognition of URRA by antisera to patient-derived field rotavirus isolates was proven. Plant virus-based spherical particles (SPs), a novel, effective and safe adjuvant, considerably enhanced the immunogenicity of the URRA in a mouse model. Given these facts, a URRA + SPs vaccine candidate is regarded as a prospective basis for a universal vaccine against rotavirus
    • …
    corecore