8 research outputs found

    Thurston's pullback map on the augmented Teichm\"uller space and applications

    Full text link
    Let ff be a postcritically finite branched self-cover of a 2-dimensional topological sphere. Such a map induces an analytic self-map σf\sigma_f of a finite-dimensional Teichm\"uller space. We prove that this map extends continuously to the augmented Teichm\"uller space and give an explicit construction for this extension. This allows us to characterize the dynamics of Thurston's pullback map near invariant strata of the boundary of the augmented Teichm\"uller space. The resulting classification of invariant boundary strata is used to prove a conjecture by Pilgrim and to infer further properties of Thurston's pullback map. Our approach also yields new proofs of Thurston's theorem and Pilgrim's Canonical Obstruction theorem.Comment: revised version, 28 page

    Combinatorial equivalence of Thurston maps

    No full text
    Non UBCUnreviewedAuthor affiliation: Stony Brook UniversityPostdoctora
    corecore