738 research outputs found
A mutational signature in gastric cancer suggests therapeutic strategies
published_or_final_versio
Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma
T-cell non-Hodgkin's lymphomas develop following transformation of tissue resident T-cells. We performed a meta-analysis of whole exome sequencing data from 403 patients with eight subtypes of T-cell non-Hodgkin's lymphoma to identify mutational signatures and associated recurrent gene mutations. Signature 1, indicative of age-related deamination, was prevalent across all T-cell lymphomas, reflecting the derivation of these malignancies from memory T-cells. Adult T-cell leukemia-lymphoma was specifically associated with signature 17, which was found to correlate with the IRF4 K59R mutation that is exclusive to Adult T-cell leukemia-lymphoma. Signature 7, implicating UV exposure was uniquely identified in cutaneous T-cell lymphoma (CTCL), contributing 52% of the mutational burden in mycosis fungoides and 23% in Sezary syndrome. Importantly this UV signature was observed in CD4 + T-cells isolated from the blood of Sezary syndrome patients suggesting extensive re-circulation of these T-cells through skin and blood. Analysis of non-Hodgkin's T-cell lymphoma cases submitted to the national 100,000 WGS project confirmed that signature 7 was only identified in CTCL strongly implicating UV radiation in the pathogenesis of cutaneous T-cell lymphoma
Microstrip to Parallel-Strip Nonlinear Transition Balun with Stubs and DGS for UWB Dipole Antenna
Three tapered baluns with nonlinear transition are developed for harmonic suppression in dipole antenna. The first balun consists of an exponential profile with the size of a quarter–wavelength for both the height and width with a wideband characteristic. However, for some applications such as narrowband harmonic suppression antennas and wideband-to-narrowband reconfigurable antennas, the suppression of higher operating band is desired. By employing stubs-filter and a defected ground structure (DGS), two narrowband tapered baluns are produced. They are named as an exponential balun-stub and an exponential balun-DGS, respectively, that operate from 1 to 2 GHz. A simulated and measured results that based on the reflection coefficient is found to be better than -10 dB from 1 to 2 GHz. The employment of the stubs and DGS have enabled these baluns to have the capability to reject the unwanted higher frequency band from 2.0 to 10 GHz. Finally, the proposed baluns are employed as a feeding circuit for an ultra wideband (UWB) circular dipole antenna that produces a reasonable outcome
DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis.
Breast cancer genomes have revealed a novel form of mutation showers (kataegis) in which multiple same-strand substitutions at C:G pairs spaced one to several hundred nucleotides apart are clustered over kilobase-sized regions, often associated with sites of DNA rearrangement. We show kataegis can result from AID/APOBEC-catalysed cytidine deamination in the vicinity of DNA breaks, likely through action on single-stranded DNA exposed during resection. Cancer-like kataegis can be recapitulated by expression of AID/APOBEC family deaminases in yeast where it largely depends on uracil excision, which generates an abasic site for strand breakage. Localized kataegis can also be nucleated by an I-SceI-induced break. Genome-wide patterns of APOBEC3-catalyzed deamination in yeast reveal APOBEC3B and 3A as the deaminases whose mutational signatures are most similar to those of breast cancer kataegic mutations. Together with expression and functional assays, the results implicate APOBEC3B/A in breast cancer hypermutation and give insight into the mechanism of kataegis. DOI:http://dx.doi.org/10.7554/eLife.00534.001
Whole-Genome Sequencing of Retinoblastoma Reveals the Diversity of Rearrangements Disrupting RB1 and Uncovers a Treatment-Related Mutational Signature.
The development of retinoblastoma is thought to require pathological genetic changes in both alleles of the RB1 gene. However, cases exist where RB1 mutations are undetectable, suggesting alternative pathways to malignancy. We used whole-genome sequencing (WGS) and transcriptomics to investigate the landscape of sporadic retinoblastomas derived from twenty patients, sought RB1 and other driver mutations and investigated mutational signatures. At least one RB1 mutation was identified in all retinoblastomas, including new mutations in addition to those previously identified by clinical screening. Ten tumours carried structural rearrangements involving RB1 ranging from relatively simple to extremely complex rearrangement patterns, including a chromothripsis-like pattern in one tumour. Bilateral tumours obtained from one patient harboured conserved germline but divergent somatic RB1 mutations, indicating independent evolution. Mutational signature analysis showed predominance of signatures associated with cell division, an absence of ultraviolet-related DNA damage and a profound platinum-related mutational signature in a chemotherapy-exposed tumour. Most RB1 mutations are identifiable by clinical screening. However, the increased resolution and ability to detect otherwise elusive rearrangements by WGS have important repercussions on clinical management and advice on recurrence risks
Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer.
The somatic mutations in a cancer genome are the aggregate outcome of one or more mutational processes operative through the lifetime of the individual with cancer. Each mutational process leaves a characteristic mutational signature determined by the mechanisms of DNA damage and repair that constitute it. A role was recently proposed for the APOBEC family of cytidine deaminases in generating particular genome-wide mutational signatures and a signature of localized hypermutation called kataegis. A germline copy number polymorphism involving APOBEC3A and APOBEC3B, which effectively deletes APOBEC3B, has been associated with modestly increased risk of breast cancer. Here we show that breast cancers in carriers of the deletion show more mutations of the putative APOBEC-dependent genome-wide signatures than cancers in non-carriers. The results suggest that the APOBEC3A-APOBEC3B germline deletion allele confers cancer susceptibility through increased activity of APOBEC-dependent mutational processes, although the mechanism by which this increase in activity occurs remains unknown.We would like to thank the Wellcome Trust for support (grant reference 098051). SN-Z is a Wellcome-Beit Prize
Fellow and is supported through a Wellcome Trust Intermediate Fellowship (grant reference WT100183MA). PJC
is personally funded through a Wellcome Trust Senior Clinical Research Fellowship (grant reference
WT088340MA). NB is an EHA fellow and is supported by a Lady Tata Memorial Trust award. The H.L. Holmes Award from the National Research Council Canada and an EMBO Fellowship supports AS
Author Correction: A practical guide for mutational signature analysis in hematological malignancies.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
Validating the concept of mutational signatures with isogenic cell models.
The diversity of somatic mutations in human cancers can be decomposed into individual mutational signatures, patterns of mutagenesis that arise because of DNA damage and DNA repair processes that have occurred in cells as they evolved towards malignancy. Correlations between mutational signatures and environmental exposures, enzymatic activities and genetic defects have been described, but human cancers are not ideal experimental systems-the exposures to different mutational processes in a patient's lifetime are uncontrolled and any relationships observed can only be described as an association. Here, we demonstrate the proof-of-principle that it is possible to recreate cancer mutational signatures in vitro using CRISPR-Cas9-based gene-editing experiments in an isogenic human-cell system. We provide experimental and algorithmic methods to discover mutational signatures generated under highly experimentally-controlled conditions. Our in vitro findings strikingly recapitulate in vivo observations of cancer data, fundamentally validating the concept of (particularly) endogenously-arising mutational signatures
- …