1,041 research outputs found

    From Tumor Immunosuppression to Eradication: Targeting Homing and Activity of Immune Effector Cells to Tumors

    Get PDF
    Unraveling the mechanisms used by the immune system to fight cancer development is one of the most ambitious undertakings in immunology. Detailed knowledge regarding the mechanisms of induction of tolerance and immunosuppression within the tumor microenvironment will contribute to the development of highly effective tumor eradication strategies. Research within the last few decades has shed more light on the matter. This paper aims to give an overview on the current knowledge of the main tolerance and immunosuppression mechanisms elicited within the tumor microenvironment, with the focus on development of effective immunotherapeutic strategies to improve homing and activity of immune effector cells to tumors

    Tumor-infiltrating lymphocytes in the immunotherapy era

    Get PDF
    The clinical success of cancer immune checkpoint blockade (ICB) has refocused attention on tumor-infiltrating lymphocytes (TILs) across cancer types. The outcome of immune checkpoint inhibitor therapy in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell responses within the tumor microenvironment. State-of-the-art single-cell analysis of TIL gene expression profiles and clonality has revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune activation and exhaustion. Many of these states are conserved across tumor types, in line with the broad responses observed clinically. Despite this homology, not all cancer types with similar TIL landscapes respond similarly to immunotherapy, highlighting the complexity of the underlying tumor-immune interactions. This observation is further confounded by the strong prognostic benefit of TILs observed for tumor types that have so far respond poorly to immunotherapy. Thus, while a holistic view of lymphocyte infiltration and dysfunction on a single-cell level is emerging, the search for response and prognostic biomarkers is just beginning. Within this review, we discuss recent advances in the understanding of TIL biology, their prognostic benefit, and their predictive value for therapy

    On the link between emotionally driven impulsivity and aggression:evidence from a validation study on the Dutch UPPS-P

    Get PDF
    The UPPS-P seems to be a promising instrument for measuring different domains of impulsivity in forensic psychiatric patients. Validation studies of the instrument however, have been conducted only in student groups. In this validation study, three groups completed the Dutch UPPS-P: healthy student (N = 94) and community (N = 134) samples and a forensic psychiatric sample (N = 73). The five-factor structure reported previously could only be substantiated in a confirmatory factor analysis over the combined groups but not in the subsamples. Subgroup sample sizes might be too small to allow such complex analyses. Internal consistency, as assessed by Cronbach’s alpha, was high on most subscale and sample combinations. In explaining aggression, especially the initial subscale negative urgency (NU) was related to elevated scores on self-reported aggression in the healthy samples (student and community). The current study is the second study that found a relationship between self-reported NU and aggression highlighting the importance of addressing this behavioural domain in aggression management therapy

    A nonsense mutation in B3GALNT2 is concordant with hydrocephalus in Friesian horses

    Get PDF
    Background: Hydrocephalus in Friesian horses is a developmental disorder that often results in stillbirth of affected foals and dystocia in dams. The occurrence is probably related to a founder effect and inbreeding in the population. The aim of our study was to find genomic associations, to investigate the mode of inheritance, to allow a DNA test for hydrocephalus in Friesian horses to be developed. In case of a monogenic inheritance we aimed to identify the causal mutation. Results: A genome-wide association study of hydrocephalus in 13 cases and 69 controls using 29,720 SNPs indicated the involvement of a region on ECA1 (P T corresponding to XP_001491595 p.Gln475* was identical to a B3GALNT2 mutation identified in a human case of muscular dystrophy-dystroglycanopathy with hydrocephalus. All 16 available cases and none of the controls were homozygous for the mutation, and all 17 obligate carriers (= dams of cases) were heterozygous. A random sample of the Friesian horse population (n = 865) was tested for the mutation in a commercial laboratory. One-hundred and forty-seven horses were carrier and 718 horses were homozygous for the normal allele; the estimated allele frequency in the Friesian horse population is 0.085. Conclusions: Hydrocephalus in Friesian horses has an autosomal recessive mode of inheritance. A nonsense mutation XM_001491545 c.1423C>T corresponding to XP_001491595 p.Gln475* in B3GALNT2 (1: 75,859,296-75,909,376) is concordant with hydrocephalus in Friesian horses. Application of a DNA test in the breeding programme will reduce the losses caused by hydrocephalus in the Friesian horse population
    corecore