94 research outputs found

    Statistical mechanics of Fofonoff flows in an oceanic basin

    Get PDF
    We study the minimization of potential enstrophy at fixed circulation and energy in an oceanic basin with arbitrary topography. For illustration, we consider a rectangular basin and a linear topography h=by which represents either a real bottom topography or the beta-effect appropriate to oceanic situations. Our minimum enstrophy principle is motivated by different arguments of statistical mechanics reviewed in the article. It leads to steady states of the quasigeostrophic (QG) equations characterized by a linear relationship between potential vorticity q and stream function psi. For low values of the energy, we recover Fofonoff flows [J. Mar. Res. 13, 254 (1954)] that display a strong westward jet. For large values of the energy, we obtain geometry induced phase transitions between monopoles and dipoles similar to those found by Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)] in the absence of topography. In the presence of topography, we recover and confirm the results obtained by Venaille and Bouchet [Phys. Rev. Lett. 102, 104501 (2009)] using a different formalism. In addition, we introduce relaxation equations towards minimum potential enstrophy states and perform numerical simulations to illustrate the phase transitions in a rectangular oceanic basin with linear topography (or beta-effect).Comment: 26 pages, 28 figure

    Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current

    Get PDF
    Moored observations of Kuroshio current structure and transport variability were made across the channel between northeast Taiwan and the Ryukyu Islands at 24 degreesN from September 19, 1994, to May 27, 1996. This was a cooperative, effort between the United States and Taiwan. The moored array was designated PCM-1, for the World Ocean Circulation Experiment (WOCE) transport resolving array. The dominant current and transport variability occurred on 100-day timescales and is shown by Zhang et al. [2001] to be caused by warm mesoscale eddys merging with the Kuroshio south of the array causing offshore meandering and flow splitting around the Ryukyu Islands. An annual transport cycle could not be resolved from our 20-month moored record because of abasing from the 100-day period events. Sea level difference data were used to extend the transport time series to 7 years giving a variation in the range of the annual transport cycle of 4-10 Sv, with a mean range closer to 4 Sv. The seasonal maximum of 24 Sv occurred in the summer and the seasonal minimum of 20 Sv occurred in the fall. A weaker secondary maximum also occurred in the winter. The cycle of Kuroshio transport appears to result from a combination of local along-channel wind forcing and Sverdrup forcing over the Philippine Sea. Our estimate of the mean transport of the Kuroshio at the entrance to the East China Sea from the moored array is 21.5 +/- 2.5 Sv. The mean transpacific balance of meridional flows forced by winds and thermohaline processes at this latitude requires an additional mean northward flow of 12 Sv with an annual cycle of +/-8 Sv along the eastern boundary of the Ryukyu Islands. The mean transport and annual cycle of the Kuroshio were found to be in reasonable agreement with basin-scale wind-forced models. Remarkable similarities are shown to exist between the mean western boundary currents and their seasonal cycles in the Atlantic (Florida Current and Antilles Current) and Pacific (Kuroshio and boundary current east of Ryukyu Island chain) at the same latitude. However, detailed comparison shows that the mean Kuroshio is weaker and more surface intensified than the mean Florida Current, while the Kuroshio-transport variability is significantly larger

    Structural and mechanical properties of TiB 2 and TiC prepared by self-propagating high-temperature synthesis/dynamic compaction

    Full text link
    Titanium-diboride and titanium-carbide compacts with diameters of 100 mm and thicknesses of 25 mm were fabricated by self-propagating high-temperature synthesis/dynamic compaction (SHS/DC) of the elemental powders. Under the best conditions, the densities were greater than 99% and 96.8% of the theoretical densities for TiB 2 and TiC, respectively. The microhardness, compressive strength, and elastic modulus of the TiB 2 prepared by the SHS/DC method were comparable to reported values for hot-pressed TiB 2 . While the microhardness and elastic modulus of the TiC compacts were comparable to those for hotpressed TiC, the compressive strength was lower due to extensive cracks in the compacts. The TiB 2 prepared using a low-purity boron powder (1–5% carbon impurity) compacted to higher densities and had less cracking than that prepared using a high-purity boron powder (0.2% carbon). This result could have an impact on the cost of producing TiB 2 /TiC structural components by the SHS/DC process.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44732/1/10853_2005_Article_BF01162518.pd

    Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds

    No full text
    The drag coefficient parameterization of wind stress is investigated for tropical storm conditions using model sensitivity studies. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model was run in a regional setting with realistic stratification and forcing fields representing Hurricane Frances, which in early September 2004 passed east of the Caribbean Leeward Island chain. The model was forced with a NOAA-HWIND wind speed product after converting it to wind stress using four different drag coefficient parameterizations. Respective model results were tested against in situ measurements of temperature profiles and velocity, available from an array of 22 surface drifters and 12 subsurface floats. Changing the drag coefficient parameterization from one that saturated at a value of 2.3 x 10(-3) to a constant drag coefficient of 1.2 x 10(-3) reduced the standard deviation difference between the simulated minus the measured sea surface temperature change from 0.8 degrees C to 0.3 degrees C. Additionally, the standard deviation in the difference between simulated minus measured high pass filtered 15-m current speed reduced from 15 cm/s to 5 cm/s. The maximum difference in sea surface temperature response when two different turbulent mixing parameterizations were implemented was 0.3 degrees C, i.e., only 11% of the maximum change of sea surface temperature caused by the storm

    A simplified model for the baroclinic and barotropic ocean response to moving tropical cyclones: 2. Model and Simulations

    No full text
    A simplified analytical model is developed to describe the baroclinic and barotropic ocean response to moving Tropical cyclones (TC) and their associated pycnocline erosions. The model builds on classical mixed layer (ML) models and linear models of ocean response to transient events. As suggested, disturbances of the upper ocean stratification caused by the ML development shall not strongly impact the dynamics of baroclinic modes. Accordingly, the baroclinic response can be estimated using the pre‐storm ocean stratification condition. To the contrary, the ML is strongly coupled with these interior motions, through the TC‐induced upwelling response which affects the entrainment velocity. The ML temperature is then strongly dependent on the local temperature gradient in the upper layer. The model is represented by a set of analytical relationships providing rapid calculations for the ocean response to TC, given a prescribed wind velocity field traveling over an ocean with arbitrary stratification. Compared to satellite observations, simulations demonstrate the model ability to quantitatively reproduce the observed shape and magnitudes of the sea surface height (SSH) and the surface temperature (SST) anomalies. Remarkably, the model is robust and efficient for a wide range of variability of TC characteristics (max wind speed, radius, shape of wind profile, translation velocity), parameters of the ocean stratification, and Coriolis parameter. Simulations provide solid evidences about the key role of TC‐induced upwelling in the ML cooling and formation of SST wake. Cross‐track advection by wind driven currents, though small compared with TC translation velocity, can significantly contribute to broaden the shape and offset of the SST wake. Given its effectiveness and low computational burden, the proposed model can be introduced as a computational module into atmospheric numerical models of TC coupled‐evolution with the ocean, through the resulting local changes of surface enthalpy fluxes

    Plucking the rose: attitudes toward nature in the modern American fairy tale

    No full text
    This thesis compares modern American fairy tales (hypertexts) with earlier influential fairy stories (hypotexts), in particular those bearing intertextual links to the "Beauty and the Beast" tale type, in order to identify changing American attitudes toward nature and to pinpoint prevailing trends of opinion in mainstream American culture today. The fairy stories chosen, through characterization, identify a human main character with civilization and a fairy main character with the wilderness. In this way, nature is made into an "Other," something super-natural and thus something different from humans. Readers may, through fairy tales, accommodate modern ideas about the preservation of nature with the more traditional role of dominating nature in order to achieve a sense of safety in those spaces not under direct human control. Indeed, to a large extent in these tales the certain, mutually beneficial outcome is human domestication of the fairy creature through sympathetic guidance. This indicates that a belief in the primacy of human communion with nature is becoming a mainstream belief in modern American culture. (Published By University of Alabama Libraries
    • 

    corecore