2 research outputs found

    Quintessential Kination and Cold Dark Matter Abundance

    Full text link
    The generation of a kination-dominated phase by a quintessential exponential model is investigated and the parameters of the model are restricted so that a number of observational constraints (originating from nucleosynthesis, the present acceleration of the universe and the dark-energy-density parameter) are satisfied. The decoupling of a thermal cold dark matter particle during the period of kination is analyzed, the relic density is calculated both numerically and semi-analytically and the results are compared with each other. It is argued that the enhancement, with respect to the standard paradigm, of the cold dark matter abundance can be expressed as a function of the quintessential density parameter at the onset of nucleosynthesis. We find that values of the latter quantity close to its upper bound require the thermal-averaged cross section times the velocity of the cold relic to be almost three orders of magnitude larger than this needed in the standard scenario so as compatibility with the cold dark matter constraint is achieved.Comment: Published versio

    Low energy antideuterons: shedding light on dark matter

    Get PDF
    Low energy antideuterons suffer a very low secondary and tertiary astrophysical background, while they can be abundantly synthesized in dark matter pair annihilations, therefore providing a privileged indirect dark matter detection technique. The recent publication of the first upper limit on the low energy antideuteron flux by the BESS collaboration, a new evaluation of the standard astrophysical background, and remarkable progresses in the development of a dedicated experiment, GAPS, motivate a new and accurate analysis of the antideuteron flux expected in particle dark matter models. To this extent, we consider here supersymmetric, universal extra-dimensions (UED) Kaluza-Klein and warped extra-dimensional dark matter models, and assess both the prospects for antideuteron detection as well as the various related sources of uncertainties. The GAPS experiment, even in a preliminary balloon-borne setup, will explore many supersymmetric configurations, and, eventually, in its final space-borne configuration, will be sensitive to primary antideuterons over the whole cosmologically allowed UED parameter space, providing a search technique which is highly complementary with other direct and indirect dark matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA
    corecore