36 research outputs found

    Interial sensing in a hand held dynamometer

    Get PDF
    Two methods for kinematic sensing in a hand-held dynamometer using accelerometers and gyroscopes are presented. The first method integrates the angular velocity signal from the gyroscope, after calibration of gyroscope offset and joint angle from a static period immediately preceding each measurement. The second method estimates tangential and radial accelerations, enabling the estimation of the gravity components in the accelerometer signals under dynamic conditions, and thus angle reconstruction. The second method appeared to perform best in preliminary test

    Distinguishing Speed From Accuracy In Scalar Implicatures

    Get PDF
    Scalar implicatures are inferences that arise when a weak expression is used instead of a stronger alternative. For example, when a speaker says, “Some of the children are in the classroom,” she often implies that not all of them are. Recent processing studies of scalar implicatures have argued that generating an implicature carries a cost. In this study we investigated this cost using a sentence verification task similar to that of Bott and Noveck (2004) combined with a response deadline procedure to estimate speed and accuracy independently. Experiment 1 compared implicit upper-bound interpretations (some [but not all]) with lower-bound interpretations (some [and possibly all]). Experiment 2 compared an implicit upper-bound meaning of some with the explicit upper-bound meaning of only some. Experiment 3 compared an implicit lower-bound meaning of some with the explicit lower-bound meaning of at least some. Sentences with implicatures required additional processing time that could not be attributed to retrieval probabilities or factors relating to semantic complexity. Our results provide evidence against several different types of processing models, including verification and nonverification default implicature models and cost-free contextual models. More generally, our data are the first to provide evidence of the costs associated with deriving implicatures per se

    Differential Changes in QTc Duration during In-Hospital Haloperidol Use

    Get PDF
    Aims: To evaluate changes in QT duration during low-dose haloperidol use, and determine associations between clinical variables and potentially dangerous QT prolongation. Methods: In a retrospective cohort study in a tertiary university teaching hospital in The Netherlands, all 1788 patients receiving haloperidol between 2005 and 2007 were studied; ninety-seven were suitable for final analysis. Rate-corrected QT duration (QTc) was measured before, during and after haloperidol use. Clinical variables before haloperidol use and at the time of each ECG recording were retrieved from hospital charts. Mixed model analysis was used to estimate changes in QT duration. Risk factors for potentially dangerous QT prolongation were estimated by logistic regression analysis. Results: Patients with normal before-haloperidol QTc duration (male <= 430 ms, female <= 450 ms) had a significant increase in QTc duration of 23 ms during haloperidol use; twenty-three percent of patients rose to abnormal levels (male >= 450 ms, female >= 470 ms). In contrast, a significant decrease occurred in patients with borderline (male 430-450 ms, female 450-470 ms) or abnormal before-haloperidol QTc duration (15 ms and 46 ms, respectively); twenty-three percent of patients in the borderline group, and only 9% of patients in the abnormal group obtained abnormal levels. Potentially dangerous QTc prolongation was independently associated with surgery before haloperidol use (OR(adj) 34.9, p = 0.009) and before-haloperidol QTc duration (OR(adj) 0.94, p = 0.004). Conclusion: QTc duration during haloperidol use changes differentially, increasing in patients with normal before-haloperidol QTc duration, but decreasing in patients with prolonged before-haloperidol QTc duration. Shorter before-haloperidol QTc duration and surgery before haloperidol use predict potentially dangerous QTc prolongatio

    Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology

    Get PDF
    Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as "microparticles". There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Robust BRCA1-like classification of copy number profiles of samples repeated across different datasets and platforms.

    Get PDF
    Breast cancers with BRCA1 germline mutation have a characteristic DNA copy number (CN) pattern. We developed a test that assigns CN profiles to be 'BRCA1-like' or 'non-BRCA1-like', which refers to resembling a BRCA1-mutated tumor or resembling a tumor without a BRCA1 mutation, respectively. Approximately one third of the BRCA1-like breast cancers have a BRCA1 mutation, one third has hypermethylation of the BRCA1 promoter and one third has an unknown reason for being BRCA1-like. This classification is indicative of patients' response to high dose alkylating and platinum containing chemotherapy regimens, which targets the inability of BRCA1 deficient cells to repair DNA double strand breaks. We investigated whether this classification can be reliably obtained with next generation sequencing and copy number platforms other than the bacterial artificial chromosome (BAC) array Comparative Genomic Hybridization (aCGH) on which it was originally developed. We investigated samples from 230 breast cancer patients for which a CN profile had been generated on two to five platforms, comprising low coverage CN sequencing, CN extraction from targeted sequencing panels (CopywriteR), Affymetrix SNP6.0, 135K/720K oligonucleotide aCGH, Affymetrix Oncoscan FFPE (MIP) technology, 3K BAC and 32K BAC aCGH. Pairwise comparison of genomic position-mapped profiles from the original aCGH platform and other platforms revealed concordance. For most cases, biological differences between samples exceeded the differences between platforms within one sample. We observed the same classification across different platforms in over 80% of the patients and kappa values of at least 0.36. Differential classification could be attributed to CN profiles that were not strongly associated to one class. In conclusion, we have shown that the genomic regions that define our BRCA1-like classifier are robustly measured by different CN profiling technologies, providing the possibility to retro- and prospectively investigate BRCA1-like classification across a wide range of CN platforms

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium

    Get PDF
    Neutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may influence arterial pathophysiology. Here we report that levels of circulating neutrophil microvesicles are enhanced by exposure to a high fat diet, a known risk factor for atherosclerosis. Neutrophil microvesicles accumulate at disease-prone regions of arteries exposed to disturbed flow patterns, and promote vascular inflammation and atherosclerosis in a murine model. Using cultured endothelial cells exposed to disturbed flow, we demonstrate that neutrophil microvesicles promote inflammatory gene expression by delivering miR-155, enhancing NF-κB activation. Similarly, neutrophil microvesicles increase miR-155 and enhance NF-κB at disease-prone sites of disturbed flow in vivo. Enhancement of atherosclerotic plaque formation and increase in macrophage content by neutrophil microvesicles is dependent on miR-155. We conclude that neutrophils contribute to vascular inflammation and atherogenesis through delivery of microvesicles carrying miR-155 to disease-prone regions.British Heart Foundation Programme Grant (CS, PE); British Heart Foundation Project Grants PG/09/067/27901 (AB, VR), PG/13/55/30365 (LW, SF), PG/14/38/30862 (CR, VR), PG/16/44/32146 (JJ, EKT, SF); British Heart Foundation Studentship FS/14/8/30605 (BW, VR); MRC Fellowship MR/K023977/1 (RB); and European Union’s Horizon 2020 Marie Skłodowska-Curie Innovative Training Network, TRAIN 721532 (CN)

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software
    corecore