73 research outputs found
Условия формирования зон скопления метана в углепородном массиве
Розглянуті основні геологічні чинники, які впливають на формування зон скупчення метану у вуглепородному масиві. Виділені, найбільш ефективні показники для середнього катагенеза порід – опосередковані локальні структури, зони тріщинуватості порід, стрижневі ділянки пісковиків (палеопотоки). Для виділених показників виконаний розрахунок дисперсійного аналізу по альтернативній ознаці. На основі розрахунків встановлено вплив кожного фактора на формування зон скупчення метану у вуглепродному масиві.Basic geological factors, which influence on forming of zone of accumulation of methane in coalrock massif, are presented. The most effective indexes for middle katagenesis of rock are determinated - medial local structures, zone of jointing of rock, race areas of sandstones (paleocurrent). For determinated indexes calculation of dispersion on an alternative character is executed. On the basis of calculations influence of every factor on forming of zone of accumulation of methane in a coalrock massif is definited
Epilepsy is an important feature of KBG syndrome associated with poorer developmental outcome
OBJECTIVE: To describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data of patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an 'epilepsy group' or 'non-epilepsy group'. Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1% , RR 4.6 (95% CI 1.7-13.1)). Seizure onset in patients with KBG syndrome occurred at a median age of four years (range 12 months - 20 years) and the majority had generalized onset seizures (57.7%)with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least one year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥ 2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significant poorer neurodevelopmental outcome compared to those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy
Outcomes and comorbidities of SCN1A-related seizure disorders
PURPOSE: Differentiating between Dravet syndrome and non-Dravet SCN1A-related phenotypes is important for prognosis regarding epilepsy severity, cognitive development, and comorbidities. When a child is diagnosed with genetic epilepsy with febrile seizures plus (GEFS+) or febrile seizures (FS), accurate prognostic information is essential as well, but detailed information on seizure course, seizure freedom, medication use, and comorbidities is lacking for this milder patient group. In this cross-sectional study, we explore disease characteristics in milder SCN1A-related phenotypes and the nature, occurrence, and relationships of SCN1A-related comorbidities in both patients with Dravet and non-Dravet syndromes. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated, consisting of 116 patients with Dravet syndrome and 48 patients with either GEFS+, febrile seizures plus (FS+), or FS. Clinical data were collected from medical records, semi-structured telephone interviews, and three questionnaires: the Functional Mobility Scale (FMS), the Pediatric Quality of Life Inventory (PedsQL) Measurement Model, and the Child or Adult Behavior Checklists (CBCL/ABCL). RESULTS: Walking disabilities and severe behavioral problems affect 71% and 43% of patients with Dravet syndrome respectively and are almost never present in patients with non-Dravet syndromes. These comorbidities are strongly correlated to lower quality-of-life (QoL) scores. Less severe comorbidities occur in patients with non-Dravet syndromes: learning problems and psychological/behavioral problems are reported for 27% and 38% respectively. The average QoL score of the non-Dravet group was comparable with that of the general population. The majority of patients with non-Dravet syndromes becomes seizure-free after 10 years of age (85%). CONCLUSIONS: Severe behavioral problems and walking disabilities are common in patients with Dravet syndrome and should receive specific attention during clinical management. Although the epilepsy course of patients with non-Dravet syndromes is much more favorable, milder comorbidities frequently occur in this group as well. Our results may be of great value for clinical care and informing newly diagnosed patients and their parents about prognosis
Epilepsy is an important feature of KBG syndrome associated with poorer developmental outcome
Objective: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype–phenotype correlation. Methods: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an “epilepsy group” or “non-epilepsy group”. Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. Results: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7–13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months – 20 years), and the majority had generalized onset seizures (57.7%) with tonic–clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype–phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. Significance: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy
De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus
Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy, and movement disorder. We evaluated a large cohort of patients (n=25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor, and ataxia. Later in the disease course they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration, and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibers and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders
Social responsiveness scale-aided analysis of the clinical impact of copy number variations in autism
Recent array-based studies have detected a wealth of copy number variations (CNVs) in patients with autism spectrum disorders (ASD). Since CNVs also occur in healthy individuals, their contributions to the patient’s phenotype remain largely unclear. In a cohort of children with symptoms of ASD, diagnosis of the index patient using ADOS-G and ADI-R was performed, and the Social Responsiveness Scale (SRS) was administered to the index patients, both parents, and all available siblings. CNVs were identified using SNP arrays and confirmed by FISH or array CGH. To evaluate the clinical significance of CNVs, we analyzed three families with multiple affected children (multiplex) and six families with a single affected child (simplex) in which at least one child carried a CNV with a brain-transcribed gene. CNVs containing genes that participate in pathways previously implicated in ASD, such as the phosphoinositol signaling pathway (PIK3CA, GIRDIN), contactin-based networks of cell communication (CNTN6), and microcephalin (MCPH1) were found not to co-segregate with ASD phenotypes. In one family, a loss of CNTN5 co-segregated with disease. This indicates that most CNVs may by themselves not be sufficient to cause ASD, but still may contribute to the phenotype by additive or epistatic interactions with inherited (transmitted) mutations or non-genetic factors. Our study extends the scope of genome-wide CNV profiling beyond de novo CNVs in sporadic patients and may aid in uncovering missing heritability in genome-wide screening studies of complex psychiatric disorders
The detection of a strong episignature for Chung–Jansen syndrome, partially overlapping with Börjeson–Forssman–Lehmann and White–Kernohan syndromes
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung–Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung–Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White–Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson–Forssman–Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung–Jansen, Börjeson–Forssman–Lehmann and White–Kernohan syndromes.</p
Gene-Network Analysis Identifies Susceptibility Genes Related to Glycobiology in Autism
The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD), and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD
- …