530 research outputs found

    All sky CMB map from cosmic strings integrated Sachs-Wolfe effect

    Full text link
    By actively distorting the Cosmic Microwave Background (CMB) over our past light cone, cosmic strings are unavoidable sources of non-Gaussianity. Developing optimal estimators able to disambiguate a string signal from the primordial type of non-Gaussianity requires calibration over synthetic full sky CMB maps, which till now had been numerically unachievable at the resolution of modern experiments. In this paper, we provide the first high resolution full sky CMB map of the temperature anisotropies induced by a network of cosmic strings since the recombination. The map has about 200 million sub-arcminute pixels in the healpix format which is the standard in use for CMB analyses (Nside=4096). This premiere required about 800,000 cpu hours; it has been generated by using a massively parallel ray tracing method piercing through a thousands of state of art Nambu-Goto cosmic string numerical simulations which pave the comoving volume between the observer and the last scattering surface. We explicitly show how this map corrects previous results derived in the flat sky approximation, while remaining completely compatible at the smallest scales.Comment: 8 pages, 4 figures, uses RevTeX. References added, matches published versio

    Advanced code-division multiplexers for superconducting detector arrays

    Full text link
    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal-plane code-division multiplexers can be combined with multi-gigahertz readout based on superconducting microresonators to scale to even larger arrays.Comment: 8 pages, 3 figures, presented at the 14th International Workshop on Low Temperature Detectors, Heidelberg University, August 1-5, 2011, proceedings to be published in the Journal of Low Temperature Physic

    Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys

    Full text link
    In the next decade, new ground-based Cosmic Microwave Background (CMB) experiments such as Simons Observatory (SO), CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to Superconducting Quantum Interference Device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT (AdvACT) and POLARBEAR-2/Simons Array bolometers. Molybdenum-copper bilayer ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.Comment: 8 pages, 4 figures, conference proceedings submitted to the Journal of Low Temperature Physic

    CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor

    Full text link
    We present the detailed science case, and brief descriptions of the telescope design, site, and first light instrument plans for a new ultra-wide field submillimeter observatory, CCAT-prime, that we are constructing at a 5600 m elevation site on Cerro Chajnantor in northern Chile. Our science goals are to study star and galaxy formation from the epoch of reionization to the present, investigate the growth of structure in the Universe, improve the precision of B-mode CMB measurements, and investigate the interstellar medium and star formation in the Galaxy and nearby galaxies through spectroscopic, polarimetric, and broadband surveys at wavelengths from 200 um to 2 mm. These goals are realized with our two first light instruments, a large field-of-view (FoV) bolometer-based imager called Prime-Cam (that has both camera and an imaging spectrometer modules), and a multi-beam submillimeter heterodyne spectrometer, CHAI. CCAT-prime will have very high surface accuracy and very low system emissivity, so that combined with its wide FoV at the unsurpassed CCAT site our telescope/instrumentation combination is ideally suited to pursue this science. The CCAT-prime telescope is being designed and built by Vertex Antennentechnik GmbH. We expect to achieve first light in the spring of 2021.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, June 14th, 201

    Survey strategy optimization for the Atacama Cosmology Telescope

    Get PDF
    In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over about 2000 sq. deg. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24 hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.Comment: 14 Pages, 9 Figures, 4 Table

    The Atacama Cosmology Telescope: Physical Properties of Sunyaev-Zel'dovich Effect Clusters on the Celestial Equator

    Get PDF
    We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich Effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 square degrees centered on the celestial equator, is divided into two regions. The main region uses 270 square degrees of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5-meter telescope. We confirm a total of 49 clusters to z~1.3, of which 22 (all at z>0.55) are new discoveries. For the second region the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z~0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richness and SZ-derived mass. We also present X-ray fluxes and luminosities from the ROSAT All Sky Survey which confirm that this is a massive sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z=1.1 (photometric), has an integrated XMM-Newton X-ray temperature of kT_x=7.9+/-1.0 keV and combined mass of M_200a=8.2(-2.5,+3.3)x10^14 M_sun/h70 placing it among the most massive and X-ray-hot clusters known at redshifts beyond z=1. We also highlight the optically-rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z=0.705 (spectroscopic) as the most significant detection of the whole equatorial sample with a Chandra-derived mass of M_200a=1.9(-0.4,+0.6)x10^15 M_sun/h70, comparable to some of the most massive known clusters like "El Gordo" and the Bullet Cluster.Comment: 18 pages, 12 figures. Accepted to the Astrophysical Journal. New version includes minor changes in the accepted pape

    The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument

    Get PDF
    The Atacama Cosmology Telescope (ACT) is designed to make high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3 degree field of view, 100 mK cryogenics with continuous cooling, and meta material anti-reflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich and kinetic Sunyaev-Zel'dovich signals, and CMB lensing due to large scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems
    corecore