3,121 research outputs found
Transformation design and nonlinear Hamiltonians
We study a class of nonlinear Hamiltonians, with applications in quantum
optics. The interaction terms of these Hamiltonians are generated by taking a
linear combination of powers of a simple `beam splitter' Hamiltonian. The
entanglement properties of the eigenstates are studied. Finally, we show how to
use this class of Hamiltonians to perform special tasks such as conditional
state swapping, which can be used to generate optical cat states and to sort
photons.Comment: Accepted for publication in Journal of Modern Optic
Experimental violation of a Bell's inequality in time with weak measurement
The violation of J. Bell's inequality with two entangled and spatially
separated quantum two- level systems (TLS) is often considered as the most
prominent demonstration that nature does not obey ?local realism?. Under
different but related assumptions of "macrorealism", plausible for macroscopic
systems, Leggett and Garg derived a similar inequality for a single degree of
freedom undergoing coherent oscillations and being measured at successive
times. Such a "Bell's inequality in time", which should be violated by a
quantum TLS, is tested here. In this work, the TLS is a superconducting quantum
circuit whose Rabi oscillations are continuously driven while it is
continuously and weakly measured. The time correlations present at the detector
output agree with quantum-mechanical predictions and violate the inequality by
5 standard deviations.Comment: 26 pages including 10 figures, preprint forma
Entanglement-free Heisenberg-limited phase estimation
Measurement underpins all quantitative science. A key example is the
measurement of optical phase, used in length metrology and many other
applications. Advances in precision measurement have consistently led to
important scientific discoveries. At the fundamental level, measurement
precision is limited by the number N of quantum resources (such as photons)
that are used. Standard measurement schemes, using each resource independently,
lead to a phase uncertainty that scales as 1/sqrt(N) - known as the standard
quantum limit. However, it has long been conjectured that it should be possible
to achieve a precision limited only by the Heisenberg uncertainty principle,
dramatically improving the scaling to 1/N. It is commonly thought that
achieving this improvement requires the use of exotic quantum entangled states,
such as the NOON state. These states are extremely difficult to generate.
Measurement schemes with counted photons or ions have been performed with N <=
6, but few have surpassed the standard quantum limit and none have shown
Heisenberg-limited scaling. Here we demonstrate experimentally a
Heisenberg-limited phase estimation procedure. We replace entangled input
states with multiple applications of the phase shift on unentangled
single-photon states. We generalize Kitaev's phase estimation algorithm using
adaptive measurement theory to achieve a standard deviation scaling at the
Heisenberg limit. For the largest number of resources used (N = 378), we
estimate an unknown phase with a variance more than 10 dB below the standard
quantum limit; achieving this variance would require more than 4,000 resources
using standard interferometry. Our results represent a drastic reduction in the
complexity of achieving quantum-enhanced measurement precision.Comment: Published in Nature. This is the final versio
High-throughput, quantitative analyses of genetic interactions in E. coli.
Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli
Does the road to happiness depend on the retirement decision? Evidence from Italy
This study estimates the causal effect of retirement decision on well-being in Italy. To do so, the authors exploit the exogenous variation provided by the changes in the eligibility criteria for pensions that were enacted in Italy in 1995 (Dini’s law) and in 1997 (Prodi’s law, from the names of the prime ministers at the time of their introduction). A sizeable and positive impact of retirement decision is found on satisfaction with leisure time and on frequency of meeting friends. Furthermore, the results are generalized, allowing for the estimation of different moments from different data sources
Steam reforming on transition-metal carbides from density-functional theory
A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2)
on early transition-metal carbides (TMC's) is performed by means of
density-functional theory calculations. The set of considered surfaces includes
the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC,
VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces.
It is found that carbides provide a wide spectrum of reactivities towards the
steam reforming reaction, from too reactive via suitable to too inert. The
reactivity is discussed in terms of the electronic structure of the clean
surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated
alpha-Mo_2C(100) surfaces, are identified as promising steam reforming
catalysts. These findings suggest that carbides provide a playground for
reactivity tuning, comparable to the one for pure metals.Comment: 6 pages, 4 figure
Quantum teleportation using active feed-forward between two Canary Islands
Quantum teleportation [1] is a quintessential prerequisite of many quantum
information processing protocols [2-4]. By using quantum teleportation, one can
circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum
states to a party whose location is even unknown over arbitrary distances. Ever
since the first experimental demonstrations of quantum teleportation of
independent qubits [6] and of squeezed states [7], researchers have
progressively extended the communication distance in teleportation, usually
without active feed-forward of the classical Bell-state measurement result
which is an essential ingredient in future applications such as communication
between quantum computers. Here we report the first long-distance quantum
teleportation experiment with active feed-forward in real time. The experiment
employed two optical links, quantum and classical, over 143 km free space
between the two Canary Islands of La Palma and Tenerife. To achieve this, the
experiment had to employ novel techniques such as a frequency-uncorrelated
polarization-entangled photon pair source, ultra-low-noise single-photon
detectors, and entanglement-assisted clock synchronization. The average
teleported state fidelity was well beyond the classical limit of 2/3.
Furthermore, we confirmed the quality of the quantum teleportation procedure
(without feed-forward) by complete quantum process tomography. Our experiment
confirms the maturity and applicability of the involved technologies in
real-world scenarios, and is a milestone towards future satellite-based quantum
teleportation
Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum
Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism
Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) presenting with ventricular fibrillation in an adult: a case report
Anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA) is a rare congenital anomaly. The usual clinical course is severe left sided heart failure and mitral valve insufficiency presenting during the first months of life. However, in some cases collateral blood supply from the right coronary artery is sufficient and symptoms may be subtle or even absent. Arrhythmias or sudden cardiac death in adult life may be the first clinical presentation in patients with ALCAPA. We report a case, where a 39-year old woman presented with ventricular fibrillation during phycial exertion. Coronary angiography and CT-angiography revealed an anomalous origin of the left coronary artery, and an aortic reimplantation of the left coronary artery was performed followed by ICD implantation. A review of the literature on ALCAPA is presented along with CT images before and after surgery
- …