38,023 research outputs found
Continuous quantum error correction by cooling
We describe an implementation of quantum error correction that operates
continuously in time and requires no active interventions such as measurements
or gates. The mechanism for carrying away the entropy introduced by errors is a
cooling procedure. We evaluate the effectiveness of the scheme by simulation,
and remark on its connections to some recently proposed error prevention
procedures.Comment: 8 pages, 5 figures. Published version. Minor change in conten
Quantum logic gates using Stark shifted Raman transitions in a cavity
We present a scheme to realise the basic two-quibit logic gates such as
quantum phase gate and controlle-NOT gate using a detuned optical cavity
interacting with a three-level Raman system. We discuss the role of Stark
shifts which are as important as the terms leading to two-photon transition.
The operation of the proposed logic gates involves metastable states of the
atom and hence is not affected by spontaneous emission. These ideas can be
extended to produce multiparticle entanglement.Comment: 5 pages, 1 figure, RevTeX4, Text is modifie
Entanglement Detection Using Majorization Uncertainty Bounds
Entanglement detection criteria are developed within the framework of the
majorization formulation of uncertainty. The primary results are two theorems
asserting linear and nonlinear separability criteria based on majorization
relations, the violation of which would imply entanglement. Corollaries to
these theorems yield infinite sets of scalar entanglement detection criteria
based on quasi-entropic measures of disorder. Examples are analyzed to probe
the efficacy of the derived criteria in detecting the entanglement of bipartite
Werner states. Characteristics of the majorization relation as a comparator of
disorder uniquely suited to information-theoretical applications are emphasized
throughout.Comment: 10 pages, 1 figur
Recommended from our members
Self-selection and risk sharing in a modern world of lifelong annuities - Abstract of the London Discussion
This abstract relates to the following paper: Gerrard, R., Hiabu, M., Kyriakou, I. and Nielsen, J. P. (2018) Self-selection and risk sharing in a modern world of lifelong annuities â Abstract of the London Discussion. British Actuarial Journal. Cambridge University Press, 23. doi: 10.1017/S135732171800020X
Basic Logic and Quantum Entanglement
As it is well known, quantum entanglement is one of the most important
features of quantum computing, as it leads to massive quantum parallelism,
hence to exponential computational speed-up. In a sense, quantum entanglement
is considered as an implicit property of quantum computation itself. But...can
it be made explicit? In other words, is it possible to find the connective
"entanglement" in a logical sequent calculus for the machine language? And
also, is it possible to "teach" the quantum computer to "mimic" the EPR
"paradox"? The answer is in the affirmative, if the logical sequent calculus is
that of the weakest possible logic, namely Basic logic. A weak logic has few
structural rules. But in logic, a weak structure leaves more room for
connectives (for example the connective "entanglement"). Furthermore, the
absence in Basic logic of the two structural rules of contraction and weakening
corresponds to the validity of the no-cloning and no-erase theorems,
respectively, in quantum computing.Comment: 10 pages, 1 figure,LaTeX. Shorter version for proceedings
requirements. Contributed paper at DICE2006, Piombino, Ital
Recommended from our members
Self-selection and risk sharing in a modern world of life-long annuities
Communicating a pension product well is as important as optimising the financial value. In a recent study, we showed that up to 80% of the value of a pension lump sum could be lost if customer communication failed. In this paper, we extend the simple customer interaction of the earlier contribution to the more challenging lifetime annuity case. Using a simple mobile phone device, the pension customer can select the life-long optimal investment strategy within minutes. The financial risk trade-off is presented as a trade-off between the pension paid and the number of years the life-long annuity is guaranteed. The pension payment decreases when investment security increases. The necessary underlying mathematical financial hedging theory is included in the stud
Reconceptualising Personas Across Cultures: Archetypes, Stereotypes & Collective Personas in Pastoral Namibia
The paucity of projects where persona is the research foci and a lack of consensus on this artefact keep many reticent about its purpose and value. Besides crafting personas is expected to differ across cultures, which contrasts the advancements in Western theory with studies and progress in other sites. We postulate User-Created Personas reveal specific characteristics of situated contexts by allowing laypeople to design persona artefacts in their own terms. Hence analysing four persona sessions with an ethnic group in pastoral Namibia âovaHereroâ brought up a set of fundamental questions around the persona artefact regarding stereotypes, archetypes, and collective persona representations: (1) to what extent user depictions are stereotypical or archetypal? If stereotypes prime (2) to what degree are current personas a useful method to represent end-users in technology design? And, (3) how can we ultimately read accounts not conforming to mainstream individual persona descriptions but to collectives
On-demand generation of entanglement of atomic qubits via optical interferometry
The problem of on-demand generation of entanglement between single-atom
qubits via a common photonic channel is examined within the framework of
optical interferometry. As expected, for a Mach-Zehnder interferometer with
coherent laser beam as input, a high-finesse optical cavity is required to
overcome sensitivity to spontaneous emission. We show, however, that with a
twin-Fock input, useful entanglement can in principle be created without
cavity-enhancement. Both approaches require single-photon resolving detectors,
and best results would be obtained by combining both cavity-feedback and
twin-Fock inputs. Such an approach may allow a fidelity of using a
two-photon input and currently available mirror and detector technology. In
addition, we study interferometers based on NOON states and show that they
perform similarly to the twin-Fock states, yet without the need for
high-precision photo-detectors. The present interferometrical approach can
serve as a universal, scalable circuit element for quantum information
processing, from which fast quantum gates, deterministic teleportation,
entanglement swapping , can be realized with the aid of single-qubit
operations.Comment: To be published in PR
Computation by measurements: a unifying picture
The ability to perform a universal set of quantum operations based solely on
static resources and measurements presents us with a strikingly novel viewpoint
for thinking about quantum computation and its powers. We consider the two
major models for doing quantum computation by measurements that have hitherto
appeared in the literature and show that they are conceptually closely related
by demonstrating a systematic local mapping between them. This way we
effectively unify the two models, showing that they make use of interchangeable
primitives. With the tools developed for this mapping, we then construct more
resource-effective methods for performing computation within both models and
propose schemes for the construction of arbitrary graph states employing
two-qubit measurements alone.Comment: 13 pages, 18 figures, REVTeX
- âŠ