37,012 research outputs found
Ginsparg-Wilson Relation and Ultralocality
It is shown that it is impossible to construct a free theory of fermions on
infinite hypercubic Euclidean lattice in four dimensions that is: (a)
ultralocal, (b) respects symmetries of hypercubic lattice, (c) corresponding
kernel satisfies D gamma5 + gamma5 D = D gamma5 D (Ginsparg-Wilson relation),
(d) describes single species of massless Dirac fermions in the continuum limit.Comment: 4 pages, REVTEX; few minor change
A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles
The development of accurate constitutive models of fibrous soft-tissues is a challenging problem. Many consider the tissue to be a collection of fibres with a continuous distribution function representing their orientations. A novel discrete fibre model is presented consisting of six weighted fibre bundles. Each bundle is oriented such that they pass through opposing vertices of a regular icosahedron. A novel aspect of the model is the use of simple analytical distribution functions to simulate the undulated collagen fibres. This approach yields a closed form analytical expression for the strain energy function for the collagen fibre bundle that avoids the sometimes costly numerical integration of some statistical distribution functions. The elastin fibres are characterized by a neo-Hookean strain energy function. The model accurately simulates the biaxial stretching of rabbit-skin (error-of-fit 8.7%), the uniaxial stretching of pig-skin (error-of-fit 7.6%), equibiaxial loading of aortic valve cusp (error-of-fit 0.8%), and the simple shear of rat septal myocardium (error-of-fit 9.1%). The proposed model compares favourably with previously published soft-tissue models and alternative methods of representing undulated collagen fibres. The stiffness of collagen fibres predicted by the model ranges from 8.0 MPa to 0.93 GPa. The stiffness of elastin fibres ranges from 2.5 kPa to 154.4 kPa. The anisotropy of model resulting from the representation of the fibre field with a discrete number of fibres is also explored
Collective Fields for QCD
A gauge-symmetric approach to effective Lagrangians is described with special
emphasis on derivations of effective low-energy Lagrangians from QCD. The
examples we discuss are based on exact rewritings of cut-off QCD in terms of
new collective degrees of freedom. These cut-off Lagrangians are thus
``effective'' in the sense that they explicitly contain some of the physical
long-distance degrees of freedom from the outset.(Talk presented by P.H.
Damgaard at the workshop on ``Quantum Field Theoretical Methods in High Energy
Physics'', Kyffhauser, Germany, Sept. 1993. To appear in those proceedings).Comment: LaTeX, 12 pages, CERN--TH-7035/9
The spatial relation between the event horizon and trapping horizon
The relation between event horizons and trapping horizons is investigated in
a number of different situations with emphasis on their role in thermodynamics.
A notion of constant change is introduced that in certain situations allows the
location of the event horizon to be found locally. When the black hole is
accreting matter the difference in area between the two different horizons can
be many orders of magnitude larger than the Planck area. When the black hole is
evaporating the difference is small on the Planck scale. A model is introduced
that shows how trapping horizons can be expected to appear outside the event
horizon before the black hole starts to evaporate. Finally a modified
definition is introduced to invariantly define the location of the trapping
horizon under a conformal transformation. In this case the trapping horizon is
not always a marginally outer trapped surface.Comment: 16 pages, 1 figur
Recommended from our members
Identification and forecasting in mortality models
Mortality models often have inbuilt identification issues challenging the statistician. The statistician can choose to work with well-defined freely varying parameters, derived as maximal invariants in this paper, or with ad hoc identified parameters which at first glance seem more intuitive, but which can introduce a number of unnecessary challenges. In this paper we describe the methodological advantages from using the maximal invariant parameterisation and we go through the extra methodological challenges a statistician has to deal with when insisting on working with ad hoc identifications. These challenges are broadly similar in frequentist and in Bayesian setups. We also go through a number of examples from the literature where ad hoc identifications have been preferred in the statistical analyses
Ginsparg-Wilson-Luscher Symmetry and Ultralocality
Important recent discoveries suggest that Ginsparg-Wilson-Luscher (GWL)
symmetry has analogous dynamical consequences for the theory on the lattice as
chiral symmetry does in the continuum. While it is well known that inherent
property of lattice chiral symmetry is fermion doubling, we show here that
inherent property of GWL symmetry is that the infinitesimal symmetry
transformation couples fermionic degrees of freedom at arbitrarily large
lattice distances (non-ultralocality). The consequences of this result for
ultralocality of symmetric actions are discussed.Comment: 18 pages, LATEX. For clarity changed to infinitesimal
transformations, typos corrected, explicit hypothesis adde
Inequalities for quantum channels assisted by limited resources
The information capacities and ``distillability'' of a quantum channel are
studied in the presence of auxiliary resources. These include prior
entanglement shared between the sender and receiver and free classical bits of
forward and backward communication. Inequalities and trade-off curves are
derived. In particular an alternative proof is given that in the absence of
feedback and shared entanglement, forward classical communication does not
increase the quantum capacity of a channel.Comment: 8 pages, 4 figures (references updated, minor changes
Products of Random Matrices
We derive analytic expressions for infinite products of random 2x2 matrices.
The determinant of the target matrix is log-normally distributed, whereas the
remainder is a surprisingly complicated function of a parameter characterizing
the norm of the matrix and a parameter characterizing its skewness. The
distribution may have importance as an uncommitted prior in statistical image
analysis.Comment: 9 pages, 1 figur
Transonic Elastic Model for Wiggly Goto-Nambu String
The hitherto controversial proposition that a ``wiggly" Goto-Nambu cosmic
string can be effectively represented by an elastic string model of exactly
transonic type (with energy density inversely proportional to its tension
) is shown to have a firm mathematical basis.Comment: 8 pages, plain TeX, no figure
Signatures of orbital loop currents in the spatially resolved local density of states
Polarized neutron scattering measurements have suggested that intra-unit cell
antiferromagnetism may be associated with the pseudogap phase. Assuming that
loop current order is responsible for the observed magnetism, we calculate some
signatures of such circulating currents in the local density of states around a
single non-magnetic impurity in a coexistence phase with superconductivity. We
find a distinct C4 symmetry breaking near the disorder which is also detectable
in the resulting quasi-particle interference patterns.Comment: 5 pages, 3 figure
- …