2,350 research outputs found
Higher-Order Momentum Distributions and Locally Affine LDDMM Registration
To achieve sparse parametrizations that allows intuitive analysis, we aim to
represent deformation with a basis containing interpretable elements, and we
wish to use elements that have the description capacity to represent the
deformation compactly. To accomplish this, we introduce in this paper
higher-order momentum distributions in the LDDMM registration framework. While
the zeroth order moments previously used in LDDMM only describe local
displacement, the first-order momenta that are proposed here represent a basis
that allows local description of affine transformations and subsequent compact
description of non-translational movement in a globally non-rigid deformation.
The resulting representation contains directly interpretable information from
both mathematical and modeling perspectives. We develop the mathematical
construction of the registration framework with higher-order momenta, we show
the implications for sparse image registration and deformation description, and
we provide examples of how the parametrization enables registration with a very
low number of parameters. The capacity and interpretability of the
parametrization using higher-order momenta lead to natural modeling of
articulated movement, and the method promises to be useful for quantifying
ventricle expansion and progressing atrophy during Alzheimer's disease
Experimental demonstration of all-optical 2R regeneration at 10 Gb/s In a novel MMI-SOA based device
- …