160 research outputs found

    Multiplicativity of completely bounded p-norms implies a new additivity result

    Full text link
    We prove additivity of the minimal conditional entropy associated with a quantum channel Phi, represented by a completely positive (CP), trace-preserving map, when the infimum of S(gamma_{12}) - S(gamma_1) is restricted to states of the form gamma_{12} = (I \ot Phi)(| psi >< psi |). We show that this follows from multiplicativity of the completely bounded norm of Phi considered as a map from L_1 -> L_p for L_p spaces defined by the Schatten p-norm on matrices; we also give an independent proof based on entropy inequalities. Several related multiplicativity results are discussed and proved. In particular, we show that both the usual L_1 -> L_p norm of a CP map and the corresponding completely bounded norm are achieved for positive semi-definite matrices. Physical interpretations are considered, and a new proof of strong subadditivity is presented.Comment: Final version for Commun. Math. Physics. Section 5.2 of previous version deleted in view of the results in quant-ph/0601071 Other changes mino

    Characterization of distinct Arctic Aerosol Accumulation Modes and their Sources

    Get PDF
    10 pages, 4 figures, 1 table, supplementary data https://doi.org/10.1016/j.atmosenv.2018.03.060In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9–915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012–2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89–91% during February–April, 1–3% during June–August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February–April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June–August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September–October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the ArcticThe study was supported by the Spanish Ministry of Economy through project BIO-NUC (CGL2013-49020-R) and the Ramon y Cajal fellowship (RYC-2012-11922), and by the EU though the FP7-PEOPLE-2013-IOF programme (Project number 624680, MANU – Marine Aerosol NUcleations). The National Centre for Atmospheric Science NCAS Birmingham group is funded by the UK Natural Environment Research Council. [...] This work was financially supported by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region, which is part of the Danish contribution to “Arctic Monitoring and Assessment Program” (AMAP) and the Danish research project “Short lived Climate Forcers” (SLCF), and the Danish Council for Independent Research (project NUMEN, DFF-FTP-4005-00485B). The findings and conclusions presented here do not necessarily reflect the views of the Agency. This work was also supported by the Nordic Centre of Excellence (NCoE) Cryosphere-Atmosphere Interactions in a Changing Arctic Climate (CRAICC). The Villum Foundation is acknowledged for funding the construction of Villum Research Station, Station NordPeer Reviewe

    Long-Range Forces of QCD

    Get PDF
    We consider the scattering of two color dipoles (e.g., heavy quarkonium states) at low energy - a QCD analog of Van der Waals interaction. Even though the couplings of the dipoles to the gluon field can be described in perturbation theory, which leads to the potential proportional to (N_c^2-1)/R^{7}, at large distances R the interaction becomes totally non-perturbative. Low-energy QCD theorems are used to evaluate the leading long-distance contribution \sim (N_f^2-1)/(11N_c - 2N_f)^2 R^{-5/2} exp(-2 \mu R) (\mu is the Goldstone boson mass), which is shown to arise from the correlated two-boson exchange. The sum rule which relates the overall strength of the interaction to the energy density of QCD vacuum is derived. Surprisingly, we find that when the size of the dipoles shrinks to zero (the heavy quark limit in the case of quarkonia), the non-perturbative part of the interaction vanishes more slowly than the perturbative part as a consequence of scale anomaly. As an application, we evaluate elastic \pi J/\psi and \pi J/\psi \to \pi \psi' cross sections.Comment: 16pages, 9 eps figures; discussion extended, 2 new references added, to appear in Phys.Rev.

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    New insights into the genetic etiology of Alzheimer's disease and related dementias.

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Trends in the application of chemometrics to foodomics studies

    Full text link
    corecore