49 research outputs found

    Refining the interpretation of lacustrine carbonate isotope records: Implications of a mineralogy-specific Lake Van case study

    Get PDF
    Oxygen and carbon isotope (δ18O and δ13C) data from bulk carbonates are widely applied proxies for temperature, the precipitation/evaporation ratio and productivity in lacustrine palaeohydrology and palaeoclimatology. In case of the terminal and alkaline Lake Van, however, previous studies have shown that bulk oxygen isotope compositions are in disagreement with other proxies when interpreted in a conventional manner. Similarly, the reports on the nature and the timing and site of carbonate precipitation in Lake Van are inconsistent. This study provides evidence on the mineralogy (X-ray powder diffraction analysis, scanning electron microscope imaging, confocal Raman microscopy, electron microprobe analysis) and isotope composition (δ18O and δ13C) of non-skeletal carbonate minerals in a Lake Van sedimentary profile spanning the last ca. 150 kyr. Carbonate phases present in the sediment include aragonite, low-Mg calcite, and calcian dolomite. Dolomite forms as an early diagenetic phase and occurs episodically in high concentrations driving the bulk isotope record towards the higher dolomite δ18O and varying δ13C values. Aragonite and low-Mg calcite precipitate in the surface water and are present in the sediments in varying amounts (relative aragonite to calcite content for dolomite-poor samples Ar/(Ar + Cc) of 93 to 41 wt%). In an attempt to explain this variation, we revised a precipitation model based on annually laminated sediments containing both aragonite and calcite spatially separated in light and dark coloured laminae, respectively. According to our model, spring calcite precipitation, under close-to-freshwater conditions, is followed by evapoconcentration-driven aragonite precipitation in late summer. The precipitation of these carbonate polymorphs from chemically differing surface waters (i.e. freshwater-influenced and evapoconcentrated) leads to distinctly different oxygen and carbon isotope signatures between sedimentary penecontemporaneous aragonite and calcite. The δ18O and δ13C values of aragonite relative to calcite are significantly higher by several per mille than inferred from aragonite-calcite fractionation factors alone, suggesting that the generalised assumption of sedimentary coeval calcite and aragonite precipitating from water with the same isotopic composition is flawed. The here proposed revised hydrologically-separated carbonate precipitation model is not only taking (i) differences in the isotopic fractionation between carbonate minerals into account, but also (ii) considering the hydrological conditions and the processes favouring the precipitation of a given mineral and ultimately controlling its isotopic composition. If mixed mineralogies are present, this mineralogy-specific approach has the potential of refining environmental reconstructions and reconciling apparently equivocal interpretations of different proxy records

    The composition of apatite in the Archean Siilinjärvi glimmerite-carbonatite complex in eastern Finland

    Get PDF
    We present a geochemical dataset and cathodoluminescence images of apatite from the Neoarchean (2610 Ma) glimmerite-carbonatite rocks from the Siilinjärvi complex, Eastern Finland. The subhedral, tapered prismatic grains are compositionally fluorapatite, with limited substitution of Ca by Sr, Na and low REE and Si contents. The Sr/Y ratios are among the highest in a global apatite comparison, comparable to those from other calcite carbonatites, dolomite carbonatites, and phoscorites. Some grains show evidence of late- or post-magmatic interaction with a carbonatite magma or a hydrothermal fluid, resulting in REE-rich overgrowth rims or recrystallized grains with abundant fluid inclusions. We interpret the high Sr/Y ratios combined with low REE contents and depleted heavy REE+Y to represent crystallization from a mantlederived carbonatite parental magma. We show that the Siilinjärvi apatite is chemically heterogeneous but with a limited range in compositions. There are noticeable compositional differences on all spatial scales from micrometer to tens of meters, i.e., within a single crystal, between crystals in a sample, between samples and the two individual sampling locations. We conclude that the intra-crystal geochemical variability in apatite is a suitable tracer of the magmatic and post-magmatic evolution of carbonatite complexes

    Focused radiogenic heating of middle crust caused ultrahigh temperatures in southern Madagascar

    Get PDF
    Internal heating can cause melting, metamorphism, and crustal weakening in convergent orogens. This study evaluates the role of radiogenic heat production (RHP) in a Neoproterozoic ultrahigh-temperature metamorphic (UHTM) terrane exposed in southern Madagascar. Monazite and zircon geochronology indicates that the Paleoproterozoic Androyen and Anosyen domains (i) collided with the oceanic Vohibory Arc at ~630 Ma, (ii) became incorporated into the Gondwanan collisional orogen by ~580 Ma, and (iii) were exhumed during crustal thinning at 525–510 Ma. Ti-in-quartz and Zr-in-rutile thermometry reveals that UHTM occurred over >20,000 km^2, mostly within the Anosyen domain. Assuming that U, Th, and K contents of samples from the field area are representative of the middle to lower crust during orogenesis, RHP was high enough—locally >5 μW/m^3—to cause regional UHTM in <60 Myr. We conclude that, due in large part to the stability and insolubility of monazite at high crustal temperatures, RHP was the principal heat source responsible for UHTM, obviating the need to evoke external heat sources. Focused RHP probably thermally weakened portions of the middle crust, gravitationally destabilizing the orogen and facilitating thinning via lateral extrusion of hot crustal sections

    Constraints on the preservation of proxy data in carbonate archives – lessons from a marine limestone to marble transect, Latemar, Italy

    Get PDF
    This work evaluates an exceptionally complex natural laboratory, the Middle Triassic Latemar isolated platform in the northern Italian Dolomite Mountains and explores spatial and temporal gradients in processes and products related to contact metamorphism, dolomitization and dedolomitization of marine limestones. The relation between petrographic change and re-equilibration of geochemical proxy data is evaluated from the perspective of carbonate-archive research. Hydrothermal dolomitization of the limestone units is triggered by dykes and associated hydrothermal fluids radiating from the nearby Predazzo Intrusion. Detailed petrography, fluid inclusion analysis, δ13C and δ18O data and 87Sr/86Sr isotope ratios shed light on the extreme textural and geochemical complexity. Metamorphic and diagenetic patterns include: (i) peak-metamorphic and retrograde-metamorphic phases including three dolomite marbles, two dedolomite marbles, brucite, magnesium silicates and late-stage meteoric/vadose cement at the contact aureole; (ii) four spatially defined episodes of dolomitization, authigenic quartz, low magnesium calcite and late-stage meteoric cement at the Latemar isolated platform; and (iii) kilometre-scale gradients in δ13C values from the contact aureole towards the platform interior. Results shown here are relevant for two reasons: first, the spatial analysis of alteration products ranging from high-grade metamorphic overprint of marbles at temperatures of 700˚C in the contact aureole to moderately altered limestones in the platform interior at temperatures 20 km. Second, under rock-buffered conditions, and irrespective of metamorphic to diagenetic fluid-rock interactions, both marbles, and low-temperature hydrothermal dolomites have conservative marine δ13C and δ18O values. The fact that metamorphism and hydrothermal dolomitization of precursor limestones and early diagenetic dolostones did not per se reset environmental proxy data is of interest for those concerned with carbonate archive research in Earth’s deep time

    U-Pb dating of interspersed gabbroic magmatism and hydrothermal metamorphism during lower crustal accretion, Vema lithospheric section, Mid-Atlantic Ridge

    Get PDF
    New U/Pb analyses of zircon and xenotime constrain the timing of magmatism, magmatic assimilation, and hydrothermal metamorphism during formation of the lower crust at the Mid-Atlantic Ridge. The studied sample is an altered gabbro from the Vema lithospheric section (11°N). Primary gabbroic minerals have been almost completely replaced by multiple hydrothermal overprints: cummingtonitic amphibole and albite formed during high-temperature hydration reactions and are overgrown first by kerolite and then prehnite and chlorite. In a previous study, clear inclusion-free zircons from the sample yielded Th-corrected 206Pb/238U dates of 13.528 ± 0.101 to 13.353 ± 0.057 Ma. Ti concentrations, reported here, zoning patterns and calculated Th/U of the dated grains are consistent with these zircons having grown during igneous crystallization. To determine the timing of hydrothermal metamorphism, we dated a second population of zircons, with ubiquitous <1–20 µm chlorite inclusions, and xenotimes that postdate formation of metamorphic albite. The textures and inclusions of the inclusion-rich zircons suggest that they formed by coupled dissolution-reprecipitation of metastable igneous zircon during or following hydrothermal metamorphism. Th-corrected 206Pb/238U dates for the inclusion-rich zircons range from 13.598 ± 0.012 to 13.503 ± 0.018 Ma and predate crystallization of all but one of the inclusion-free zircons, suggesting that the inclusion-rich zircons were assimilated from older hydrothermally altered wall rocks. The xenotime dates are sensitive to the Th correction applied, but even using a maximum correction, 206Pb/238U dates range from 13.341 ± 0.162 to 12.993 ± 0.055 Ma and postdate crystallization of both the inclusion-rich zircons and inclusion-free igneous zircons, reflecting a second hydrothermal event. The data provide evidence for alternating magmatism and hydrothermal metamorphism at or near the ridge axis during accretion of the lower crust at a ridge-transform intersection and suggest that hydrothermally altered crust was assimilated into younger gabbroic magmas. The results of this study show that high-precision U-Pb dating is a powerful method for studying the timing of magmatic and hydrothermal processes at mid-ocean ridges

    Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes

    Get PDF
    Diet is a crucial trait of an animal’s lifestyle and ecology. The trophic level of an organism indicates its functional position within an ecosystem and holds significance for its ecology and evolution. Here, we demonstrate the use of zinc isotopes (δ66Zn) to geochemically assess the trophic level in diverse extant and extinct sharks, including the Neogene megatooth shark (Otodus megalodon) and the great white shark (Carcharodon carcharias). We reveal that dietary δ66Zn signatures are preserved in fossil shark tooth enameloid over deep geologic time and are robust recorders of each species’ trophic level. We observe significant δ66Zn differences among the Otodus and Carcharodon populations implying dietary shifts throughout the Neogene in both genera. Notably, Early Pliocene sympatric C. carcharias and O. megalodon appear to have occupied a similar mean trophic level, a finding that may hold clues to the extinction of the gigantic Neogene megatooth shark.publishedVersio

    Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock : results from ODP Leg 209

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 311 (2011): 242–252, doi:10.1016/j.epsl.2011.09.021.Carbonate veins hosted in ultramafic basement drilled at two sites in the Mid Atlantic Ridge 15°N area record two different stages of fluid-basement interaction. A first generation of carbonate veins consists of calcite and dolomite that formed syn- to postkinematically in tremolite–chlorite schists and serpentine schists that represent gently dipping large-offset faults. These veins formed at temperatures between 90 and 170 °C (oxygen isotope thermometry) and from fluids that show intense exchange of Sr and Li with the basement (87Sr/86Sr = 0.70387 to 0.70641, δ7LiL-SVEC = + 3.3 to + 8.6‰). Carbon isotopic compositions range to high δ13CPDB values (+ 8.7‰), indicating that methanogenesis took place at depth. The Sr–Li–C isotopic composition suggests temperatures of fluid-rock interaction that are much higher (T > 350–400 °C) than the temperatures of vein mineral precipitation inferred from oxygen isotopes. A possible explanation for this discrepancy is that fluids cooled conductively during upflow within the presumed detachment fault. Aragonite veins were formed during the last 130 kyrs at low-temperatures within the uplifted serpentinized peridotites. Chemical and isotopic data suggest that the aragonites precipitated from cold seawater, which underwent overall little exchange with the basement. Oxygen isotope compositions indicate an increase in formation temperature of the veins by 8–12 °C within the uppermost ~ 80 m of the subseafloor. This increase corresponds to a high regional geothermal gradient of 100–150 °C/km, characteristic of young lithosphere undergoing rapid uplift.WB, MR, and NJ thank the Deutsche Forschungsgemeinschaft (grant no. BA1605/2) for funding. NJ acknowledges support from the DFG-Research Center/Excellence Cluster, The Ocean in the Earth Syste

    Metamorphic events during the formation of the East African Orogen: case studies from Madagascar and Tanzania

    Get PDF
    The formation of the supercontinent Gondwana at the transition from the Proterozoic to the Phanerozoic ended with the closure of the Mozambique Ocean and the subsequent collision of continental blocks belonging to East and West Gondwana. As a result of the so-called Pan-African Orogeny, the huge East African Orogen formed. The present thesis investigates metamorphic rocks from Madagascar and Tanzania, using petrological, geochronological, and geochemical methods, in order to unravel the timing and geodynamic causes of metamorphic events in the East African Orogen
    corecore