4,804 research outputs found
Temporary ponds in the UK; a critical biodiversity resource for freshwater plants and animals
The importance of ponds for biodiversity in Britain has been demonstrated by a number of studies. However, most of the research and interest has been directed at permanent waterbodies, and temporary ponds have been largely neglected. In this article the author present some preliminary findings from a project which aims to fill some of the many gaps in our knowledge of temporary ponds in Britain. The project, which runs for three years until the end of 2001, aims specifically to investigate the ecology of temporary ponds in England and Wales by describing (i) their wetland plant and macroinvertebrate communities, (ii) their physico-chemical characteristics, and (iii) their value as a biodiversity resource. The article focuses on the assessment of temporary ponds as a biodiversity resource and briefly considers aspects of species richness, rarity and distinctiveness. Where possible, temporary ponds are compared with other waterbody types, mainly permanent ponds from the National Pond Survey (NPS), to give the results a broader context
The aerothermal environment and material response: A review
Aerothermal environments are discussed with emphasis on the cold dense and warm atmospheres of Saturn and Uranus. The spectral distribution of the incident radiation flux is given for the Saturn nominal entry. Saturn and Uranus stagnation point heat pulses with no ablation are compared. Calculations for small flow rates, important in the Saturn-Uranus nominal type entries, are given to investigate the effects due to the mixing layer separation. Analytical and experimental techniques applicable to flowfield calculations are reviewed with emphasis on two--dimensional flow capabilities. Transport properties are reviewed in terms of flowfield calculations along with radiation transport codes. Various approaches to entry calculations are presented. It is indicated that only certain aspects of the aerothermal environment can be simulated in the laboratory and that although flight experiments are becoming feasible they are so expensive that they are prohibitive. Recommendations for further study are included
Rapid methods for calculating radiation transport in the entry environment
A procedure is developed for the prediction of radiation transport events in the context of the entry heating environment. The equivalent-width and exponential approximations are employed to reduce the computational requirements of the governing equations. Novel features are introduced in the use of an Elsasser band model to estimate line overlapping events and in the formulation of the wall reflection events. A matrix of calculations is presented to allow an assessment of the trade-offs between accuracy and computational efforts. It is concluded that the equivalent width model allows significant savings in computational effort with only modest penalties in accuracy. Consequently, the model should be viewed as an attractive candidate for use in radiation-coupled flow field prediction procedures
Electrical characteristics of Al contact to NiSi using thin W layer as a barrier
We show that the thermal instability that is observed in Schottky diodes with an Al film on NiSi contact to can be removed by introducing a very thin (~250 Å) tungsten film between the Al and the NiSi layers. This structure can be formed by sequential evaporation of Ni, W, and Al and subsequent thermal annealing to form NiSi. Schottky barrier measurements show that the contact is thermally stable at 450 °C up to about 1-h annealing with very little change in the electronic barrier height. A model, derived from the electrical measurements, is proposed for the failure mode of the tungsten barrier after excessive annealing
Diffusion barriers
The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host
Thermal oxidation of nickel disilicide
The thermal oxidation characteristics of nickel disilicide on Si substrates have been investigated in the temperature range of 700–900 °C in dry oxygen and wet oxygen. A surface layer of SiO2 grows parabolically in time. The growth rate is independent on the crystalline structure (epitaxial or polycrystalline) and thickness of the NiSi2 layer. We surmise that the oxidation mechanism is dominated by oxygen diffusion through the growing SiO2. Activation energies for the dry and wet oxidation are 1.0±0.1 eV and 1.5±0.1 eV, respectively. NiSi2 layers on SiO2 oxidize with the same rate—resulting with progressively Ni-rich NiSi2. Preliminary measurements of the oxide quality yield dielectric strength of 2.1×10^6 V cm^−1, and a pinhole density of about 100 per cm2. A survey of oxidation data for Si and other refractory metal silicides shows that their oxidation does not draw similar kinetics to that of NiSi2
Pure Space-Charge-Limited Electron Current in Silicon
Phosphorus diffusion on π‐type silicon is used to fabricate n^+πn^+ structures of base widths between 3 μ and 60 μ with π‐type resistivities of 300 Ω⋅cm and 8 kΩ⋅cm. The V‐I characteristics of the structures are measured at room temperature and at liquid‐nitrogen temperature. The change in current for constant applied voltage is also observed in that temperature range.
The results are interpreted in terms of simple models based on the assumption that pure space‐charge‐limited current of electrons is present. The models describe well the characteristics measured on 300‐Ω⋅cm samples, except for the range of small biases on the thinnest samples. It is concluded that the drift velocity of electrons at 78°K tends towards saturation at 1.0×10^7 cm∕sec ± 10%. The current observed at this temperature actually reaches this value. The critical electric field at 78°K is 10^3 V∕cm±30% but the meaning of this concept for electrons in silicon is vague. The temperature dependence of the current at fixed bias voltages is in general agreement with the variation of the low field mobility. Results obtained on 8‐kΩ⋅cm samples need clarification. Effects of breakdown and trapping are not observed
Defects production and annealing in self-implanted Si
230-keV 28Si ions were implantated into Si(100) at room temperature with doses from 1014 to 1015/cm2. The samples were analyzed by x-ray double crystal diffractometry and 2-MeV 4He ion channeling spectrometry. The implanted layer has a parallel lattice spacing equal to that of the unimplanted substrate. The perpendicular lattice spacing is larger than that of the unimplanted substrate and is proportional to the defect concentration extracted from the channeling measurement. Both the perpendicular lattice spacing and the defect concentration increase nonlinearly with ion dose. The defect concentration initially increases slowly with dose until a critical value (~15%, at 4×1014/cm2), then rises rapidly, and finally a continuous amorphous layer forms. The initial sluggish increase of the damage is due to the considerable recombination of point defects at room temperature. The rapid growth of the defect concentration is attributed to the reduction of the threshold energy for atomic displacement in a predamaged crystal. The amorphization is envisioned as a cooperative process initiated by a spontaneous collapse of heavily damaged crystalline regions. The annealing behavior of the damaged layer reveals various stages of defect recovery, indicating that the damage consists of a hierarchy of various defect structures of vacancy and interstitial aggregates
Self-confined metallic interconnects for very large scale integration
A novel method to produce narrow metallic lines is presented. Lines of NiSi2 lithographically formed on SiO2 substrates are oxidized. The formed SiO2 layer consumes most of the Si from the silicide, leaving a metallic Ni line fully confined by SiO2. The associated problems together with the potential utilization are discussed
Generation and recovery of strain in (28)Si-implanted pseudomorphic GeSi films on Si(100)
Effects of ion implantation of 320 keV Si-28 at room temperature in pseudomorphic metastable GexSi1-x (x almost-equal-to 0.04, 0.09, 0.13) layers approximately 170 nm thick grown on Si(100) wafers were characterized by x-ray double-crystal diffractometry and MeV He-4 channeling spectrometry. The damage induced by implantation produces additional compressive strain in the GexSi1-x layers, superimposed on the intrinsic compressive strain of the heterostructures. This strain rises with the dose proportionally for doses below several times 10(14) Si-28/cm2. Furthermore, for a given dose, the strain increases with the Ge content in the layer. Upon thermal processing, the damage anneals out and the strain recovers to the value before implantation. Amorphized samples (doses of greater than 2 x 10(15) Si-28/cm2) regrow poorly
- …