141 research outputs found

    Process Optimization and Downscaling of a Single Electron Single Dot Memory

    Full text link
    This paper presents the process optimization of a single-electron nanoflash electron memory. Self-aligned single dot memory structures have been fabricated using a wet anisotropic oxidation of a silicon nanowire. One of the main issue was to clarify the process conditions for the dot formation. Based on the process modeling, the influence of various parameters (oxidation temperature, nanowire shape) has been investigated. The necessity of a sharp compromise between these different parameters to ensure the presence of the memory dot has been established. In order to propose an aggressive memory cell, the downscaling of the device has been carefully studied. Scaling rules show that the size of the original device could be reduced by a factor of 2. This point has been previously confirmed by the realization of single-electron memory devices

    The influence of residual oxidizing impurities on the synthesis of graphene by atmospheric pressure chemical vapor deposition

    Full text link
    The growth of graphene on copper by atmospheric pressure chemical vapor deposition in a system free of pumping equipment is investigated. The emphasis is put on the necessity of hydrogen presence during graphene synthesis and cooling. In the absence of hydrogen during the growth step or cooling at slow rate, weak carbon coverage, consisting mostly of oxidized and amorphous carbon, is obtained on the copper catalyst. The oxidation originates from the inevitable occurrence of residual oxidizing impurities in the reactor's atmosphere. Graphene with appreciable coverage can be grown within the vacuum-free furnace only upon admitting hydrogen during the growth step. After formation, it is preserved from the destructive effect of residual oxidizing contaminants once exposure at high temperature is minimized by fast cooling or hydrogen flow. Under these conditions, micrometer-sized hexagon-shaped graphene domains of high structural quality are achieved.Comment: Accepted in Carbo

    Graphene-coated holey metal films: tunable molecular sensing by surface plasmon resonance

    Get PDF
    We report on the enhancement of surface plasmon resonances in a holey bidimensional grating of subwavelength size, drilled in a gold thin film coated by a graphene sheet. The enhancement originates from the coupling between charge carriers in graphene and gold surface plasmons. The main plasmon resonance peak is located around 1.5 microns. A lower constraint on the gold-induced doping concentration of graphene is specified and the interest of this architecture for molecular sensing is also highlighted.Comment: 5 pages, 4 figures, Final version. Published in Applied Physics Letter

    Low temperature tunneling current enhancement in silicide/Si Schottky contacts with nanoscale barrier width

    Full text link
    The low temperature electrical behavior of adjacent silicide/Si Schottky contacts with or without dopant segregation is investigated. The electrical characteristics are very well modeled by thermionic-field emission for non-segregated contacts separated by micrometer-sized gaps. Still, an excess of current occurs at low temperature for short contact separations or dopant-segregated contacts when the voltage applied to the device is sufficiently high. From two-dimensional self-consistent non-equilibrium Green's function simulations, the dependence of the Schottky barrier profile on the applied voltage, unaccounted for in usual thermionic-field emission models, is found to be the source of this deviation

    Very low effective Schottky barrier height for erbium disilicide contacts on n-Si through arsenic segregation

    Full text link
    The segregation of As+ ions implanted into thin Er films deposited on n-Si substrates is studied after ErSi2-x formation. The same lowering of the effective Schottky barrier height (SBH) below 0.12 eV is obtained at moderate annealing temperatures, regardless of the redistribution of As dopants at the ErSi2-x/Si interface. On the other hand, if the implanted dose is slightly enhanced, the annealing temperature required to reach sub-0.12-eV effective SBH can be further reduced. This process enables the formation of very low effective SBH ErSi2-x/n-Si contacts with a low thermal budget
    • …
    corecore