111 research outputs found

    Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes

    Get PDF
    BACKGROUND: The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i) the classical N-acetylglutamate synthase (NAGS, gene argA) first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii) the bifunctional version of ornithine acetyltransferase (OAT, gene argJ) present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH) is fused to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis. RESULTS: The argH-A fusion, designated argH(A), and discovered in Moritella was found to be present in (and confined to) marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on the arg(A) sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X 'fusions' where X stands for a homologue of arg(A), we retrieved a large number of Bacteria and several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and Deinococcus radiodurans, the arg(A)-like sequence clusters with argH in an operon-like fashion. In this group of sequences, we find the short novel NAGS of the type identified in M. tuberculosis. Among these organisms, at least Thermus, Mycobacterium and Streptomyces species appear to rely on this short NAGS version for arginine biosynthesis. CONCLUSION: The gene-enzyme relationship for the first committed step of arginine biosynthesis should now be considered in a new perspective. In addition to bifunctional OAT, nature appears to implement at least three alternatives for the acetylation of glutamate. It is possible to propose evolutionary relationships between them starting from the same ancestral N-acetyltransferase domain. In M. tuberculosis and many other bacteria, this domain evolved as an independent enzyme, whereas it fused either with a carbamate kinase fold to give the classical NAGS (as in E. coli) or with argH as in marine gamma proteobacteria. Moreover, there is an urgent need to clarify the current nomenclature since the same gene name argA has been used to designate structurally different entities. Clarifying the confusion would help to prevent erroneous genomic annotation

    About the last common ancestor, the universal life-tree and lateral gene transfer: A reappraisal

    No full text
    An organismal tree rooted in the bacterial branch and derived from a hyperthermophilic last common ancestor (LCA) is still widely assumed to represent the path followed by evolution from the most primeval cells to the three domains recognized among contemporary organisms: Bacteria, Archaea and Eucarya. In the past few years, however, more and more discrepancies between this pattern and individual protein trees have been brought to light. There has been an overall tendency to attribute these incongruities to widespread lateral gene transfer. However, recent developments, a reappraisal of earlier evidence and considerations of our own lead us to a quite different view. It would appear (i) that the role of lateral gene transfer was overemphasized in recent discussions of molecular phylogenies; (ii) that the LCA was probably a non-thermophilic protoeukaryote from which both Archaea and Bacteria emerged by reductive evolution but not as sister groups, in keeping with a current evolutionary scheme for the biosynthesis of membrane lipids; and (iii) that thermophilic Archaea may have been the first branch to diverge from the ancestral line.SCOPUS: sh.jFLWINinfo:eu-repo/semantics/publishe

    Le contrôle génétique des biosynthèses de l'arginine et du carbamyl-phosphate chez Escherichia coli

    No full text
    Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Coordination of enzyme synthesis in the arginine pathway of Escherichia coli K-12

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Organization and expression of a Thermus thermophilus arginine cluster: Presence of unidentified open reading frames and absence of a Shine-Dalgarno sequence

    No full text
    A group of genes regulated by arginine was found clustered in the order argF-ORF1-argC-argJ-ORF4 between other, as yet uncharacterized, open reading frames (ORFs). Transcription starts were identified immediately upstream from argF and ORF4. Arginine repressed transcription that was initiated at argF but induced transcription of ORF4. The functions of ORF1 and ORF4 are unknown, but analysis of the sequence of ORF4 suggests that it is a membrane protein, possibly involved in transport of arginine or a related metabolite. Mobility shift and DNase I footprinting have revealed specific binding of pure Escherichia coli ArgR to the promoter region of Thermus thermophilus argF. These results suggest that argF transcription is controlled by a repressor homologous to those characterized in enteric bacteria and bacilli. Thermus argF mRNA is devoid of Shine-Dalgarno (SD) sequences. However, downstream from the ATG start codon of argF and many other Thermus genes (with or without an SD box), sequences were found to be complementary to nucleotides 1392 to 1409 of Thermus 16S rRNA, suggesting that an mRNA-rRNA base pairing in this region is important for correct translation initiation.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli - Effects on carbamoyl phosphate and pyrimidine biosynthesis and on uracil uptake

    No full text
    In the course of experiments directed towards the isolation of mutants of Escherichia coli K12 with altered regulation of the synthesis of carbamoylphosphate synthetase, two types of mutations were found to affect the cumulative repression of this enzyme by arginine and uracil. Alteraction of the arginine pathway regulatory gene, argR, was shown to reduce the repressibility of the enzyme by both end products while mutations affecting uridine monophosphate pyrophosphorylase (upp) besides affecting uracil uptake preclude enzyme repression by uracil or cytosine in the biosynthesis of carbamoylphosphate and the pyrimidines. The upp mutations were located on the chromosome near the gua operon. Mutations previously designated as uraP are shown to belong to this class. The relation that could exist between the loss of uridine monophosphate pyrophosphorylase and the impairment of uracil uptake is discussed. A new method for isolating argR mutants in arginine-less strains is described. © 1972 Springer-Verlag.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore