96 research outputs found
SLC37A4-CDG : mislocalization of the glucose-6-phosphate transporter to the Golgi causes a new congenital disorder of glycosylation
Loss-of-function of the glucose-6-phosphate transporter is caused by biallelic mutations in SLC37A4 and leads to glycogen storage disease Ib. Here we describe a second disease caused by a single dominant mutation in the same gene. The mutation abolishes the ER retention signal of the transporter and generates a weak Golgi retention signal. Intracellular mislocalization of the transporter leads to a congenital disorder of glycosylation instead of glycogen storage disease
Generation of an induced pluripotent stem cell line (MHHi018-A) from a patient with Cystic Fibrosis carrying p.Asn1303Lys (N1303K) mutation
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene which encodes for a chloride ion channel regulating the balance of salt and water across secretory epithelia. Here we generated an iPSC line from a CF patient homozygous for the p.Asn1303Lys mutation, a Class II folding defect mutation. This iPSC line provides a useful resource for disease modeling and to investigate the pharmacological response to CFTR modulators in iPSC derived epithelia
Foundations for a national assessment of soil biodiversity
Soils, just like all other ecosystem compartments, change over time and, consequently, conditions for soil‐inhabiting organisms are also changing, affecting their composition and diversity. Soil biodiversity is a critical component of ecosystems that supports many essential ecosystem functions and services, such as nutrient cycling, carbon sequestration, water regulation and biomass production for food, fodder, fibre and energy. However, and despite the importance of soil biodiversity for ecosystem health and human well‐being, neither current state, drivers, potential consequences for ecosystem services nor options for sustainable governance of soil biodiversity are well understood. Here, we provide a framework for and argue that conducting a national assessment of soil biodiversity, albeit being a complex endeavour, is fundamental to building a baseline to understand the current state and trends of soil biodiversity, but also to identify the main drivers of change, the impacts of soil biodiversity loss and the potential pathways for conservation and sustainable governance of soil biodiversity
Estimation of interdomain flexibility of N-terminus of factor H using residual dipolar couplings
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e. FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC datasets, collected in media containing magnetically aligned bicelles (disk-like particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC datasets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of < 40 °. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3), could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex
Recommendations for the management of autoinflammatory diseases.
Autoinflammatory diseases are characterised by fever and systemic inflammation, with potentially serious complications. Owing to the rarity of these diseases, evidence-based guidelines are lacking. In 2012, the European project Single Hub and Access point for paediatric Rheumatology in Europe (SHARE) was launched to optimise and disseminate regimens for the management of children and young adults with rheumatic diseases, facilitating the clinical practice of paediatricians and (paediatric) rheumatologists. One of the aims of SHARE was to provide evidence-based recommendations for the management of the autoinflammatory diseases cryopyrin-associated periodic syndromes (CAPS), tumour necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) and mevalonate kinase deficiency (MKD). These recommendations were developed using the European League Against Rheumatism standard operating procedure. An expert committee of paediatric and adult rheumatologists was convened. Recommendations derived from the systematic literature review were evaluated by an online survey and subsequently discussed at a consensus meeting using Nominal Group Technique. Recommendations were accepted if more than 80% agreement was reached. In total, four overarching principles, 20 recommendations on therapy and 14 recommendations on monitoring were accepted with ≥ 80% agreement among the experts. Topics included (but were not limited to) validated disease activity scores, therapy and items to assess in monitoring of a patient. By developing these recommendations, we aim to optimise the management of patients with CAPS, TRAPS and MKD
A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification
Hematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional, organoid-like differentiation system (hemanoid) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development. We show, that defined stages of early human hematopoietic development were recapitulated within the generated hemanoids. We identified KDR+/CD34high/CD144+/CD43-/CD45- hemato-endothelial progenitor cells (HEPs) forming organized, vasculature-like structures and giving rise to CD34low/CD144-/CD43+/CD45+ hematopoietic progenitor cells. We demonstrate that the endothelial to hematopoietic transition of HEPs is dependent on the presence of interleukin 3 (IL-3). Inhibition of IL-3 signalling blocked hematopoietic differentiation and arrested the cells in the HEP stage. Thus, our data suggest an important role for IL-3 in early human hematopoiesis by supporting the endothelial to hematopoietic transition of hemato-endothelial progenitor cells and highlight the potential of a hemanoid-based model to study human hematopoietic development
Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis
Hereditary pulmonary alveolar proteinosis due to GM-CSF receptor deficiency (herPAP) constitutes a life-threatening lung disease characterized by alveolar deposition of surfactant protein secondary to defective alveolar macrophage function. As current therapeutic options are primarily symptomatic, we have explored the potential of hematopoietic stem cell-based gene therapy. Using Csf2rb−/− mice, a model closely reflecting the human herPAP disease phenotype, we here demonstrate robust pulmonary engraftment of an alveolar macrophage population following intravenous transplantation of lentivirally corrected hematopoietic stem and progenitor cells. Engraftment was associated with marked improvement of critical herPAP disease parameters, including bronchoalveolar fluid protein, cholesterol and cytokine levels, pulmonary density on computed tomography scans, pulmonary deposition of Periodic Acid-Schiff+ material as well as respiratory mechanics. These effects were stable for at least nine months. With respect to engraftment and alveolar macrophage differentiation kinetics, we demonstrate the rapid development of CD11c+/SiglecF+ cells in the lungs from a CD11c–/SiglecF+ progenitor population within four weeks after transplantation. Based on these data, we suggest hematopoietic stem cell-based gene therapy as an effective and cause-directed treatment approach for herPAP
Optimal Resting-Growth Strategies of Microbial Populations in Fluctuating Environments
Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments
- …