44 research outputs found

    Simultaneous Parameter Estimation in Exploratory Factor Analysis: An Expository Review

    Full text link
    The classical exploratory factor analysis (EFA) finds estimates for the factor loadings matrix and the matrix of unique factor variances which give the best fit to the sample correlation matrix with respect to some goodness-of-fit criterion. Common factor scores can be obtained as a function of these estimates and the data. Alternatively to the classical EFA, the EFA model can be fitted directly to the data which yields factor loadings and common factor scores simultaneously. Recently, new algorithms were introduced for the simultaneous least squares estimation of all EFA model unknowns. The new methods are based on the numerical procedure for singular value decomposition of matrices and work equally well when the number of variables exceeds the number of observations. This paper provides an account that is intended as an expository review of methods for simultaneous parameter estimation in EFA. The methods are illustrated on Harman's five socio-economic variables data and a high-dimensional data set from genome research

    On the Procrustean analogue of individual differences scaling (INDSCAL)

    Get PDF
    In this paper, individual differences scaling (INDSCAL) is revisited, considering INDSCAL as being embedded within a hierarchy of individual difference scaling models. We explore the members of this family, distinguishing (i) models, (ii) the role of identification and substantive constraints, (iii) criteria for fitting models and (iv) algorithms to optimise the criteria. Model formulations may be based either on data that are in the form of proximities or on configurational matrices. In its configurational version, individual difference scaling may be formulated as a form of generalized Procrustes analysis. Algorithms are introduced for fitting the new models. An application from sensory evaluation illustrates the performance of the methods and their solutions

    Sparse Exploratory Factor Analysis

    Get PDF
    Sparse principal component analysis is a very active research area in the last decade. It produces component loadings with many zero entries which facilitates their interpretation and helps avoid redundant variables. The classic factor analysis is another popular dimension reduction technique which shares similar interpretation problems and could greatly benefit from sparse solutions. Unfortunately, there are very few works considering sparse versions of the classic factor analysis. Our goal is to contribute further in this direction. We revisit the most popular procedures for exploratory factor analysis, maximum likelihood and least squares. Sparse factor loadings are obtained for them by, first, adopting a special reparameterization and, second, by introducing additional [Formula: see text]-norm penalties into the standard factor analysis problems. As a result, we propose sparse versions of the major factor analysis procedures. We illustrate the developed algorithms on well-known psychometric problems. Our sparse solutions are critically compared to ones obtained by other existing methods

    Sparsest factor analysis for clustering variables: a matrix decomposition approach

    Get PDF
    We propose a new procedure for sparse factor analysis (FA) such that each variable loads only one common factor. Thus, the loading matrix has a single nonzero element in each row and zeros elsewhere. Such a loading matrix is the sparsest possible for certain number of variables and common factors. For this reason, the proposed method is named sparsest FA (SSFA). It may also be called FA-based variable clustering, since the variables loading the same common factor can be classified into a cluster. In SSFA, all model parts of FA (common factors, their correlations, loadings, unique factors, and unique variances) are treated as fixed unknown parameter matrices and their least squares function is minimized through specific data matrix decomposition. A useful feature of the algorithm is that the matrix of common factor scores is re-parameterized using QR decomposition in order to efficiently estimate factor correlations. A simulation study shows that the proposed procedure can exactly identify the true sparsest models. Real data examples demonstrate the usefulness of the variable clustering performed by SSFA

    From simple structure to sparse components: a review

    No full text
    The article begins with a review of the main approaches for interpretation the results from principal component analysis (PCA) during the last 50–60 years. The simple structure approach is compared to the modern approach of sparse PCA where interpretable solutions are directly obtained. It is shown that their goals are identical but they differ by the way they are realized. Next, the most popular and influential methods for sparse PCA are briefly reviewed. In the remaining part of the paper, a new approach to define sparse PCA is introduced. Several alternative definitions are considered and illustrated on a well-known data set. Finally, it is demonstrated, how one of these possible versions of sparse PCA can be used as a sparse alternative to the classical rotation methods
    corecore