45 research outputs found

    High-Resolution Satellite Data Open for Government Research

    Get PDF
    U.S. satellite commercial imagery (CI) with resolution less than 1 meter is a common geospatial reference used by the public through Web applications, mobile devices, and the news media. However, CI use in the scientific community has not kept pace, even though those who are performing U.S. government research have access to these data at no cost.Previously, studies using multiple CI acquisitions from IKONOS-2, Quickbird-2, GeoEye-1, WorldView-1, and WorldView-2 would have been cost prohibitive. Now, with near-global submeter coverage and online distribution, opportunities abound for future scientific studies. This archive is already quite extensive (examples are shown in Figure 1) and is being used in many novel applications

    U.S. Government Open Internet Access to Sub-meter Satellite Data

    Get PDF
    The National Geospatial-Intelligence Agency (NGA) has contracted United States commercial remote sensing companies GeoEye and Digital Globe to provide very high resolution commercial quality satellite imagery to federal/state government agencies and those projects/people who support government interests. Under NextView contract terms, those engaged in official government programs/projects can gain online access to NGA's vast global archive. Additionally, data from vendor's archives of IKONOS-2 (IK-2), OrbView-3 (OB-3), GeoEye-1 (GE-1), QuickBird-1 (QB-1), WorldView-1 (WV-1), and WorldView-2 (WV-2), sensors can also be requested under these agreements. We report here the current extent of this archive, how to gain access, and the applications of these data by Earth science investigators to improve discoverability and community use of these data. Satellite commercial quality imagery (CQI) at very high resolution (< 1 m) (here after referred to as CQI) over the past decade has become an important data source to U.S. federal, state, and local governments for many different purposes. The rapid growth of free global CQI data has been slow to disseminate to NASA Earth Science community and programs such as the Land-Cover Land-Use Change (LCLUC) program which sees potential benefit from unprecedented access. This article evolved from a workshop held on February 23rd, 2012 between representatives from NGA, NASA, and NASA LCLUC Scientists discussion on how to extend this resource to a broader license approved community. Many investigators are unaware of NGA's archive availability or find it difficult to access CQI data from NGA. Results of studies, both quality and breadth, could be improved with CQI data by combining them with other moderate to coarse resolution passive optical Earth observation remote sensing satellites, or with RADAR or LiDAR instruments to better understand Earth system dynamics at the scale of human activities. We provide the evolution of this effort, a guide for qualified user access, and describe current to potential use of these data in earth science

    Tracking Climate Effects on Plant-Pollinator Interaction Phenology with Satellites and Honey Bee Hives

    Get PDF
    Background/Question/Methods: The complexity of plant-pollinator interactions, the large number of species involved, and the lack of species response functions present challenges to understanding how these critical interactions may be impacted by climate and land cover change on large scales. Given the importance of this interaction for terrestrial ecosystems, it is desirable to develop new approaches. We monitor the daily weight change of honey bee (Apis mellifera) colonies to record the phenology of the Honey Bee Nectar Flow (HBNF) in a volunteer network (honeybeenet.gsfc.nasa.gov). The records document the successful interaction of a generalist pollinator with a variety of plant resources. We extract useful HBNF phenology metrics for three seasons. Sites currently exist in 35 states/provinces in North America, with a concentration in the Mid-Atlantic region. HBNF metrics are compared to standard phenology metrics derived from remotely sensed vegetation indices from NASA's MODIS sensor and published results from NOAA's A VHRR. At any given time the percentage of plants producing nectar is usually a sma11 fraction of the total satellite sensor signal. We are interested in determining how well the 'bulk' satellite vegetation parameters relate to the phenology of the HBNF, and how it varies spatially on landscape to continental scales. Results/Conclusions: We found the median and peak seasonal HBNF dates to be robust, with variation between replicate scale hives of only a few days. We developed quality assessment protocols to identify abnormal colony artifacts. Temporally, the peak and median of the HBNF in the Mid-Atlantic show a significant advance of 0.58 d/y beginning about 1970, very similar to that observed by the A VHRR since 1982 (0.57 d/y). Spatially, the HBNF metrics are highly correlated with elevation and winter minimum temperature distribution, and exhibit significant but regionally coherent inter-annual variation. The relationship between median of the spring HBNF with the "Green-up" metric from the 500 meter MODIS NDVI phenology product, for sites throughout the Eastern US 2000-2009, is well described by a single linear fit (r(exp 2) = 0.72). We conclude.that for the tree-dominated areas of the Eastern US at least the spring HBNF can be tracked very well by MODIS phenology. Analysis of other regions and seasons is presently underway but with more limited data. Spatial patterns in the eastern US and management implications will be presented and discussed

    CEOS WGCV Land Product Validation (LPV) Sub-Group: Current and Potential Roles in Future Decadal Survey Missions

    Get PDF
    The goals and objectives of the sub group are: To foster and coordinate quantitative validation of higher level global land products derive d from remotely sensed data, in a traceable way, and to relay results so they are relevant to users. and to increase the quality and effi ciency of global satellite product validation by developing and promo ting international standards and protocols for: (1) Field sampling (2) Scaling techniques (3) Accuracy reporting (4) Data / information exchange also to provide feedback to international structures (GEOSS ) for: (1) Requirements on product accuracy and quality assurance (QA 4EO) (2) Terrestrial ECV measurement standards (3) Definitions for f uture mission

    MODIS Land Data Products: Generation, Quality Assurance and Validation

    Get PDF
    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described

    Land Surface Temperature Product Validation Best Practice Protocol Version 1.0 - October, 2017

    Get PDF
    The Global Climate Observing System (GCOS) has specified the need to systematically generate andvalidate Land Surface Temperature (LST) products. This document provides recommendations on goodpractices for the validation of LST products. Internationally accepted definitions of LST, emissivity andassociated quantities are provided to ensure the compatibility across products and reference data sets. Asurvey of current validation capabilities indicates that progress is being made in terms of up-scaling and insitu measurement methods, but there is insufficient standardization with respect to performing andreporting statistically robust comparisons.Four LST validation approaches are identified: (1) Ground-based validation, which involvescomparisons with LST obtained from ground-based radiance measurements; (2) Scene-based intercomparisonof current satellite LST products with a heritage LST products; (3) Radiance-based validation,which is based on radiative transfer calculations for known atmospheric profiles and land surface emissivity;(4) Time series comparisons, which are particularly useful for detecting problems that can occur during aninstrument's life, e.g. calibration drift or unrealistic outliers due to undetected clouds. Finally, the need foran open access facility for performing LST product validation as well as accessing reference LST datasets isidentified

    Daily MODIS 500 m Reflectance Anisotropy Direct Broadcast (DB) Products for Monitoring Vegetation Phenology Dynamics

    Get PDF
    Land surface vegetation phenology is an efficient bio-indicator for monitoring ecosystem variation in response to changes in climatic factors. The primary objective of the current article is to examine the utility of the daily MODIS 500 m reflectance anisotropy direct broadcast (DB) product for monitoring the evolution of vegetation phenological trends over selected crop, orchard, and forest regions. Although numerous model-fitted satellite data have been widely used to assess the spatio-temporal distribution of land surface phenological patterns to understand phenological process and phenomena, current efforts to investigate the details of phenological trends, especially for natural phenological variations that occur on short time scales, are less well served by remote sensing challenges and lack of anisotropy correction in satellite data sources. The daily MODIS 500 m reflectance anisotropy product is employed to retrieve daily vegetation indices (VI) of a 1 year period for an almond orchard in California and for a winter wheat field in northeast China, as well as a 2 year period for a deciduous forest region in New Hampshire, USA. Compared with the ground records from these regions, the VI trajectories derived from the cloud-free and atmospherically corrected MODIS Nadir BRDF (bidirectional reflectance distribution function) adjusted reflectance (NBAR) capture not only the detailed footprint and principal attributes of the phenological events (such as flowering and blooming) but also the substantial inter-annual variability. This study demonstrates the utility of the daily 500 m MODIS reflectance anisotropy DB product to provide daily VI for monitoring and detecting changes of the natural vegetation phenology as exemplified by study regions comprising winter wheat, almond trees, and deciduous forest

    BOREAS Forest Cover Data Layers over the SSA-MSA in Raster Format

    No full text
    This data set, originally provided as vector polygons with attributes, has been processed by BORIS staff to provide raster files that can be used for modeling or for comparison purposes. The original data were received as ARC/INFO coverages or as export files from SERM. The data include information on forest parameters for the BOREAS SSA-MSA. Most of the data used for this product were acquired by BORIS in 1993; the maps were produced from aerial photography taken as recently as 1988. The data are stored in binary, image format files

    SERM Forest Fire Chronology of Saskatchewan in Vector Format

    No full text
    The BOReal Ecosystem-Atmosphere Study (BOREAS) staff personnel worked with several Canadian agencies to obtain various GIS data for use in the research efforts. This data set is a series of ARC/INFO export files of the fire history of Saskatchewan by year from 1945 to 1996, with a few missing years. The data set was compiled and provided by the Saskatchewan Environment and Resource Management (SERM) Wildlife Branch
    corecore