5,196 research outputs found
A study of the boundary flow in a rocket combustion chamber. Part 3 - Data report Final report
Rocket motor boundary flow sampling apparatu
Chaotic saddles in nonlinear modulational interactions in a plasma
A nonlinear model of modulational processes in the subsonic regime involving
a linearly unstable wave and two linearly damped waves with different damping
rates in a plasma is studied numerically. We compute the maximum Lyapunov
exponent as a function of the damping rates in a two-parameter space, and
identify shrimp-shaped self-similar structures in the parameter space. By
varying the damping rate of the low-frequency wave, we construct bifurcation
diagrams and focus on a saddle-node bifurcation and an interior crisis
associated with a periodic window. We detect chaotic saddles and their stable
and unstable manifolds, and demonstrate how the connection between two chaotic
saddles via coupling unstable periodic orbits can result in a crisis-induced
intermittency. The relevance of this work for the understanding of modulational
processes observed in plasmas and fluids is discussed.Comment: Physics of Plasmas, in pres
Modified Zakharov equations for plasmas with a quantum correction
Quantum Zakharov equations are obtained to describe the nonlinear interaction
between quantum Langmuir waves and quantum ion-acoustic waves. These quantum
Zakharov equations are applied to two model cases, namely the four-wave
interaction and the decay instability. In the case of the four-wave
instability, sufficiently large quantum effects tend to suppress the
instability. For the decay instability, the quantum Zakharov equations lead to
results similar to those of the classical decay instability except for quantum
correction terms in the dispersion relations. Some considerations regarding the
nonlinear aspects of the quantum Zakharov equations are also offered.Comment: 4 figures. Accepted for publication in Physics of Plasmas (2004
Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems
Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most
fundamental concepts in plasma physics. While the former describes the
surprising damping of linear plasma waves in a collisionless plasma, the latter
describes exact undamped nonlinear solutions of the Vlasov equation. There does
exist a relationship between the two: Landau damping can be described as the
phase-mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which
can be viewed as BGK modes in the linear limit. While these concepts have been
around for a long time, unexpected new results are still being discovered. For
Landau damping, we show that the textbook picture of phase-mixing is altered
profoundly in the presence of collision. In particular, the continuous spectrum
of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum,
even in the limit of zero collision. Furthermore, we show that these discrete
eigenmodes form a complete set of solutions. Landau-damped solutions are then
recovered as true eigenmodes (which they are not in the collisionless theory).
For BGK modes, our interest is motivated by recent discoveries of electrostatic
solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is
quite mature, there appear to be no exact three-dimensional solutions in the
literature (except for the limiting case when the magnetic field is
sufficiently strong so that one can apply the guiding-center approximation). We
show, in fact, that two- and three-dimensional solutions that depend only on
energy do not exist. However, if solutions depend on both energy and angular
momentum, we can construct exact three-dimensional solutions for the
unmagnetized case, and two-dimensional solutions for the case with a finite
magnetic field. The latter are shown to be exact, fully electromagnetic
solutions of the steady-state Vlasov-Poisson-Amp\`ere system
Dynamical stability criterion for inhomogeneous quasi-stationary states in long-range systems
We derive a necessary and sufficient condition of linear dynamical stability
for inhomogeneous Vlasov stationary states of the Hamiltonian Mean Field (HMF)
model. The condition is expressed by an explicit disequality that has to be
satisfied by the stationary state, and it generalizes the known disequality for
homogeneous stationary states. In addition, we derive analogous disequalities
that express necessary and sufficient conditions of formal stability for the
stationary states. Their usefulness, from the point of view of linear dynamical
stability, is that they are simpler, although they provide only sufficient
criteria of linear stability. We show that for homogeneous stationary states
the relations become equal, and therefore linear dynamical stability and formal
stability become equivalent.Comment: Submitted to Journal of Statistical Mechanics: Theory and Experimen
Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector
After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"
Possible background reductions in double beta decay experiments
The background induced by radioactive impurities of and
in the source of the double beta experiment NEMO-3 has been
investigated. New methods of data analysis which decrease the background from
the above mentioned contamination are identified. The techniques can also be
applied to other double beta decay experiments capable of measuring
independently the energies of the two electrons.Comment: 15 pages, 13 figures, accepted in the Nuclear Instruments and Methods
- …