750 research outputs found
Simulation of Cu-Mg metallic glass: Thermodynamics and Structure
We have obtained effective medium theory (EMT) interatomic potential
parameters suitable for studying Cu-Mg metallic glasses. We present
thermodynamic and structural results from simulations of such glasses over a
range of compositions. We have produced low-temperature configurations by
cooling from the melt at as slow a rate as practical, using constant
temperature and pressure molecular dynamics. During the cooling process we have
carried out thermodynamic analyses based on the temperature dependence of the
enthalpy and its derivative, the specific heat, from which the glass transition
temperature may be determined. We have also carried out structural analyses
using the radial distribution function (RDF) and common neighbor analysis
(CNA). Our analysis suggests that the splitting of the second peak, commonly
associated with metallic glasses, in fact has little to do with the glass
transition itself, but is simply a consequence of the narrowing of peaks
associated with structural features present in the liquid state. In fact the
splitting temperature for the Cu-Cu RDF is well above . The CNA also
highlights a strong similarity between the structure of the intermetallic
alloys and the amorphous alloys of similar composition. We have also
investigated the diffusivity in the supercooled regime. Its temperature
dependence indicates fragile-liquid behavior, typical of binary metallic
glasses. On the other hand, the relatively low specific heat jump of around
indicates apparent strong-liquid behavior, but this can
be explained by the width of the transition due to the high cooling rates.Comment: 12 pages (revtex, two-column), 12 figures, submitted to Phys. Rev.
Crystallization of the Wahnstr\"om Binary Lennard-Jones Liquid
We report observation of crystallization of the glass-forming binary
Lennard-Jones liquid first used by Wahnstr\"om [G. Wahnstr\"om, Phys. Rev. A
44, 3752 (1991)]. Molecular dynamics simulations of the metastable liquid on a
timescale of microseconds were performed. The liquid crystallized
spontaneously. The crystal structure was identified as MgZn_2. Formation of
transient crystallites is observed in the liquid. The crystallization is
investigate at different temperatures and compositions. At high temperature the
rate of crystallite formation is the limiting factor, while at low temperature
the limiting factor is growth rate. The melting temperature of the crystal is
estimated to be T_m=0.93 at rho=0.82. The maximum crystallization rate of the
A_2B composition is T=0.60+/-0.02.Comment: 4 pages, 4 figures; corrected typo
Exponential distributions of collective flow-event properties in viscous liquid dynamics
We study the statistics of flow events in the inherent dynamics in
supercooled two- and three-dimensional binary Lennard-Jones liquids.
Distributions of changes of the collective quantities energy, pressure and
shear stress become exponential at low temperatures, as does that of the event
"size" . We show how the -distribution controls the
others, while itself following from exponential tails in the distributions of
(1) single particle displacements , involving a Lindemann-like length
and (2) the number of active particles (with ).Comment: Accepter version (PRL
Strong pressure-energy correlations in liquids as a configuration space property: Simulations of temperature down jumps and crystallization
Computer simulations recently revealed that several liquids exhibit strong
correlations between virial and potential energy equilibrium fluctuations in
the NVT ensemble [U. R. Pedersen {\it et al.}, Phys. Rev. Lett. {\bf 100},
015701 (2008)]. In order to investigate whether these correlations are present
also far from equilibrium constant-volume aging following a temperature down
jump from equilibrium was simulated for two strongly correlating liquids, an
asymmetric dumbbell model and Lewis-Wahnstr{\"o}m OTP, as well as for SPC water
that is not strongly correlating. For the two strongly correlating liquids
virial and potential energy follow each other closely during the aging towards
equilibrium. For SPC water, on the other hand, virial and potential energy vary
with little correlation as the system ages towards equilibrium. Further proof
that strong pressure-energy correlations express a configuration space property
comes from monitoring pressure and energy during the crystallization (reported
here for the first time) of supercooled Lewis-Wahnstr{\"o}m OTP at constant
temperature
Estimating the density scaling exponent of viscous liquids from specific heat and bulk modulus data
It was recently shown by computer simulations that a large class of liquids
exhibits strong correlations in their thermal fluctuations of virial and
potential energy [Pedersen et al., Phys. Rev. Lett. 100, 015701 (2008)]. Among
organic liquids the class of strongly correlating liquids includes van der
Waals liquids, but excludes ionic and hydrogen-bonding liquids. The present
note focuses on the density scaling of strongly correlating liquids, i.e., the
fact their relaxation time tau at different densities rho and temperatures T
collapses to a master curve according to the expression tau propto
F(rho^gamma/T) [Schroder et al., arXiv:0803.2199]. We here show how to
calculate the exponent gamma from bulk modulus and specific heat data, either
measured as functions of frequency in the metastable liquid or extrapolated
from the glass and liquid phases to a common temperature (close to the glass
transition temperature). Thus an exponent defined from the response to highly
nonlinear parameter changes may be determined from linear response
measurements
Pressure-energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones systems
This series of papers is devoted to identifying and explaining the properties
of strongly correlating liquids, i.e., liquids with more than 90% correlation
between their virial W and potential energy U fluctuations in the NVT ensemble.
Paper IV [N. Gnan et al., J. Chem. Phys. v131, 234504 (2009)] showed that
strongly correlating liquids have "isomorphs", which are curves in the phase
diagram along which structure, dynamics, and some thermodynamic properties are
invariant in reduced units. In the present paper, using the fact that
reduced-unit radial distribution functions are isomorph invariant, we derive an
expression for the shapes of isomorphs in the WU phase diagram of generalized
Lennard-Jones systems of one or more types of particles. The isomorph shape
depends only on the Lennard-Jones exponents; thus all isomorphs of standard
Lennard-Jones systems (with exponents 12 and 6) can be scaled onto to a single
curve. Two applications are given. One is testing the prediction that the
solid-liquid coexistence curve follows an isomorph by comparing to recent
simulations by Ahmed and Sadus [J. Chem. Phys. v131, 174504 (2009)]. Excellent
agreement is found on the liquid side of the coexistence, whereas the agreement
is worse on the solid side. A second application is the derivation of an
approximate equation of state for generalized Lennard-Jones systems by
combining the isomorph theory with the Rosenfeld-Tarazona expression for the
temperature dependence of potential energy on isochores. It is shown that the
new equation of state agrees well with simulations.Comment: 12 pages, 14 figures, Section on solid-liquid coexistence expande
Estimating melting curves for Cu and Al from simulations at a single state point
Determining the melting curves of materials up to high pressures has long
been a challenge experimentally and theoretically. A large class of materials,
including most metals, has been shown to exhibit hidden scale invariance, an
approximate scale invariance of the potential-energy landscape that is not
obvious from the Hamiltonian. For these materials the isomorph theory allows
the identification of curves in the phase diagram along which structural and
dynamical properties are invariant to a good approximation when expressed in
appropriately scaled form. These curves, the isomorphs, can also be used as the
basis for constructing accurate melting curves from simulations at a single
state point [U. R. Pedersen \textit{et al.}, Nat. Comm. \textbf{7}, 12386
(2016)]. In this work we apply the method to the metals Cu simulated using the
effective medium theory and Al simulated using density functional theory (DFT).
For Cu the method works very well and is validated using two-phase melting
point simulations. For Al there are likewise good isomorphs and the method
generates the melting curve accurately as compared to previous experimental and
DFT results. In line with a recent suggestion of Hong and van de Walle [Phys.
Rev. B \textbf{100}, 140102 (2019)], we finally argue that the tendency for the
density-scaling exponent to decrease with increasing density in metals
implies that metals in general will undergo re-entrant melting, i.e., have a
maximum of melting temperature as a function of pressure.Comment: 19 pages, 13 figure
- …