750 research outputs found

    Simulation of Cu-Mg metallic glass: Thermodynamics and Structure

    Get PDF
    We have obtained effective medium theory (EMT) interatomic potential parameters suitable for studying Cu-Mg metallic glasses. We present thermodynamic and structural results from simulations of such glasses over a range of compositions. We have produced low-temperature configurations by cooling from the melt at as slow a rate as practical, using constant temperature and pressure molecular dynamics. During the cooling process we have carried out thermodynamic analyses based on the temperature dependence of the enthalpy and its derivative, the specific heat, from which the glass transition temperature may be determined. We have also carried out structural analyses using the radial distribution function (RDF) and common neighbor analysis (CNA). Our analysis suggests that the splitting of the second peak, commonly associated with metallic glasses, in fact has little to do with the glass transition itself, but is simply a consequence of the narrowing of peaks associated with structural features present in the liquid state. In fact the splitting temperature for the Cu-Cu RDF is well above TgT_g. The CNA also highlights a strong similarity between the structure of the intermetallic alloys and the amorphous alloys of similar composition. We have also investigated the diffusivity in the supercooled regime. Its temperature dependence indicates fragile-liquid behavior, typical of binary metallic glasses. On the other hand, the relatively low specific heat jump of around 1.5kB/at.1.5 k_B/\mathrm{at.} indicates apparent strong-liquid behavior, but this can be explained by the width of the transition due to the high cooling rates.Comment: 12 pages (revtex, two-column), 12 figures, submitted to Phys. Rev.

    Crystallization of the Wahnstr\"om Binary Lennard-Jones Liquid

    Full text link
    We report observation of crystallization of the glass-forming binary Lennard-Jones liquid first used by Wahnstr\"om [G. Wahnstr\"om, Phys. Rev. A 44, 3752 (1991)]. Molecular dynamics simulations of the metastable liquid on a timescale of microseconds were performed. The liquid crystallized spontaneously. The crystal structure was identified as MgZn_2. Formation of transient crystallites is observed in the liquid. The crystallization is investigate at different temperatures and compositions. At high temperature the rate of crystallite formation is the limiting factor, while at low temperature the limiting factor is growth rate. The melting temperature of the crystal is estimated to be T_m=0.93 at rho=0.82. The maximum crystallization rate of the A_2B composition is T=0.60+/-0.02.Comment: 4 pages, 4 figures; corrected typo

    Exponential distributions of collective flow-event properties in viscous liquid dynamics

    Get PDF
    We study the statistics of flow events in the inherent dynamics in supercooled two- and three-dimensional binary Lennard-Jones liquids. Distributions of changes of the collective quantities energy, pressure and shear stress become exponential at low temperatures, as does that of the event "size" S≡∑di2S\equiv\sum {d_i}^2. We show how the SS-distribution controls the others, while itself following from exponential tails in the distributions of (1) single particle displacements dd, involving a Lindemann-like length dLd_L and (2) the number of active particles (with d>dLd>d_L).Comment: Accepter version (PRL

    Strong pressure-energy correlations in liquids as a configuration space property: Simulations of temperature down jumps and crystallization

    Get PDF
    Computer simulations recently revealed that several liquids exhibit strong correlations between virial and potential energy equilibrium fluctuations in the NVT ensemble [U. R. Pedersen {\it et al.}, Phys. Rev. Lett. {\bf 100}, 015701 (2008)]. In order to investigate whether these correlations are present also far from equilibrium constant-volume aging following a temperature down jump from equilibrium was simulated for two strongly correlating liquids, an asymmetric dumbbell model and Lewis-Wahnstr{\"o}m OTP, as well as for SPC water that is not strongly correlating. For the two strongly correlating liquids virial and potential energy follow each other closely during the aging towards equilibrium. For SPC water, on the other hand, virial and potential energy vary with little correlation as the system ages towards equilibrium. Further proof that strong pressure-energy correlations express a configuration space property comes from monitoring pressure and energy during the crystallization (reported here for the first time) of supercooled Lewis-Wahnstr{\"o}m OTP at constant temperature

    Estimating the density scaling exponent of viscous liquids from specific heat and bulk modulus data

    Full text link
    It was recently shown by computer simulations that a large class of liquids exhibits strong correlations in their thermal fluctuations of virial and potential energy [Pedersen et al., Phys. Rev. Lett. 100, 015701 (2008)]. Among organic liquids the class of strongly correlating liquids includes van der Waals liquids, but excludes ionic and hydrogen-bonding liquids. The present note focuses on the density scaling of strongly correlating liquids, i.e., the fact their relaxation time tau at different densities rho and temperatures T collapses to a master curve according to the expression tau propto F(rho^gamma/T) [Schroder et al., arXiv:0803.2199]. We here show how to calculate the exponent gamma from bulk modulus and specific heat data, either measured as functions of frequency in the metastable liquid or extrapolated from the glass and liquid phases to a common temperature (close to the glass transition temperature). Thus an exponent defined from the response to highly nonlinear parameter changes may be determined from linear response measurements

    Pressure-energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones systems

    Get PDF
    This series of papers is devoted to identifying and explaining the properties of strongly correlating liquids, i.e., liquids with more than 90% correlation between their virial W and potential energy U fluctuations in the NVT ensemble. Paper IV [N. Gnan et al., J. Chem. Phys. v131, 234504 (2009)] showed that strongly correlating liquids have "isomorphs", which are curves in the phase diagram along which structure, dynamics, and some thermodynamic properties are invariant in reduced units. In the present paper, using the fact that reduced-unit radial distribution functions are isomorph invariant, we derive an expression for the shapes of isomorphs in the WU phase diagram of generalized Lennard-Jones systems of one or more types of particles. The isomorph shape depends only on the Lennard-Jones exponents; thus all isomorphs of standard Lennard-Jones systems (with exponents 12 and 6) can be scaled onto to a single curve. Two applications are given. One is testing the prediction that the solid-liquid coexistence curve follows an isomorph by comparing to recent simulations by Ahmed and Sadus [J. Chem. Phys. v131, 174504 (2009)]. Excellent agreement is found on the liquid side of the coexistence, whereas the agreement is worse on the solid side. A second application is the derivation of an approximate equation of state for generalized Lennard-Jones systems by combining the isomorph theory with the Rosenfeld-Tarazona expression for the temperature dependence of potential energy on isochores. It is shown that the new equation of state agrees well with simulations.Comment: 12 pages, 14 figures, Section on solid-liquid coexistence expande

    Estimating melting curves for Cu and Al from simulations at a single state point

    Get PDF
    Determining the melting curves of materials up to high pressures has long been a challenge experimentally and theoretically. A large class of materials, including most metals, has been shown to exhibit hidden scale invariance, an approximate scale invariance of the potential-energy landscape that is not obvious from the Hamiltonian. For these materials the isomorph theory allows the identification of curves in the phase diagram along which structural and dynamical properties are invariant to a good approximation when expressed in appropriately scaled form. These curves, the isomorphs, can also be used as the basis for constructing accurate melting curves from simulations at a single state point [U. R. Pedersen \textit{et al.}, Nat. Comm. \textbf{7}, 12386 (2016)]. In this work we apply the method to the metals Cu simulated using the effective medium theory and Al simulated using density functional theory (DFT). For Cu the method works very well and is validated using two-phase melting point simulations. For Al there are likewise good isomorphs and the method generates the melting curve accurately as compared to previous experimental and DFT results. In line with a recent suggestion of Hong and van de Walle [Phys. Rev. B \textbf{100}, 140102 (2019)], we finally argue that the tendency for the density-scaling exponent γ\gamma to decrease with increasing density in metals implies that metals in general will undergo re-entrant melting, i.e., have a maximum of melting temperature as a function of pressure.Comment: 19 pages, 13 figure
    • …
    corecore