501 research outputs found

    Measurement of the half-life of 198Au in a non-metal: High-precision measurement shows no host-material dependence

    Get PDF
    We have measured the half-life of the beta decay of 198Au to be 2.6948(9) d, with the nuclide sited in an insulating environment. Comparing this result with the half-life we measured previously with a metallic environment, we find the half-lives in both environments to be the same within 0.04%, thus contradicting a prediction that screening from a "plasma" of quasi-free electrons in a metal increases the half-life by as much as 7%

    Branching ratios for the beta decay of 21Na

    Get PDF
    We have measured the beta-decay branching ratio for the transition from 21Na to the first excited state of 21Ne. A recently published test of the standard model, which was based on a measurement of the beta-nu correlation in the decay of 21Na, depended on this branching ratio. However, until now only relatively imprecise (and, in some cases, contradictory) values existed for it. Our new result, 4.74(4)%, reduces but does not remove the reported discrepancy with the standard model.Comment: Revtex4, 2 fig

    Sequential localization of a complex electron fluid

    Full text link
    Complex and correlated quantum systems with promise for new functionality often involve entwined electronic degrees of freedom. In such materials, highly unusual properties emerge and could be the result of electron localization. Here, a cubic heavy fermion metal governed by spins and orbitals is chosen as a model system for this physics. Its properties are found to originate from surprisingly simple low-energy behavior, with two distinct localization transitions driven by a single degree of freedom at a time. This result is unexpected, but we are able to understand it by advancing the notion of sequential destruction of an SU(4) spin-orbital-coupled Kondo entanglement. Our results implicate electron localization as a unified framework for strongly correlated materials and suggest ways to exploit multiple degrees of freedom for quantum engineering.Comment: 21 pages, 4 figures (preprint format

    Experimental Validation of the Largest Calculated Isospin-Symmetry-Breaking Effect in a Superallowed Fermi Decay

    Get PDF
    A precision measurement of the gamma yields following the beta decay of 32Cl has determined its isobaric analogue branch to be (22.47^{+0.21}_{-0.19})%. Since it is an almost pure Fermi decay, we can also determine the amount of isospin-symmetry breaking in this superallowed transition. We find a very large value, delta_C=5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly-calculated, yet smaller, corrections that are currently applied to 0+ -> 0+ transitions for tests of the Standard Model

    Primitive Words, Free Factors and Measure Preservation

    Full text link
    Let F_k be the free group on k generators. A word w \in F_k is called primitive if it belongs to some basis of F_k. We investigate two criteria for primitivity, and consider more generally, subgroups of F_k which are free factors. The first criterion is graph-theoretic and uses Stallings core graphs: given subgroups of finite rank H \le J \le F_k we present a simple procedure to determine whether H is a free factor of J. This yields, in particular, a procedure to determine whether a given element in F_k is primitive. Again let w \in F_k and consider the word map w:G x G x ... x G \to G (from the direct product of k copies of G to G), where G is an arbitrary finite group. We call w measure preserving if given uniform measure on G x G x ... x G, w induces uniform measure on G (for every finite G). This is the second criterion we investigate: it is not hard to see that primitivity implies measure preservation and it was conjectured that the two properties are equivalent. Our combinatorial approach to primitivity allows us to make progress on this problem and in particular prove the conjecture for k=2. It was asked whether the primitive elements of F_k form a closed set in the profinite topology of free groups. Our results provide a positive answer for F_2.Comment: This is a unified version of two manuscripts: "On Primitive words I: A New Algorithm", and "On Primitive Words II: Measure Preservation". 42 pages, 14 figures. Some parts of the paper reorganized towards publication in the Israel J. of Mat

    Interplay between unconventional superconductivity and heavy-fermion quantum criticality: CeCu2_2Si2_2 versus YbRh2_2Si2_2

    Get PDF
    In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2_2Si2_2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2_2Si2_2. In YbRh2_2Si2_2, superconductivity appears to be suppressed at T 10T\gtrsim~10 mK by AF order (TNT_N = 70 mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TAT_A slightly above 2 mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at TcT_c = 2 mK. Like the pressure - induced QCP in CeRhIn5_5, the magnetic field - induced one in YbRh2_2Si2_2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-TT unconventional heavy - fermion superconductors and other families of unconventional superconductors with higher TcT_cs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.Comment: 30 pages, 7 Figures, Accepted for publication in Philosophical Magazin

    Rank rigidity for CAT(0) cube complexes

    Full text link
    We prove that any group acting essentially without a fixed point at infinity on an irreducible finite-dimensional CAT(0) cube complex contains a rank one isometry. This implies that the Rank Rigidity Conjecture holds for CAT(0) cube complexes. We derive a number of other consequences for CAT(0) cube complexes, including a purely geometric proof of the Tits Alternative, an existence result for regular elements in (possibly non-uniform) lattices acting on cube complexes, and a characterization of products of trees in terms of bounded cohomology.Comment: 39 pages, 4 figures. Revised version according to referee repor
    corecore