52 research outputs found

    Bayesian Analysis for Hidden Markov Factor Analysis Models

    Get PDF
    The purpose of this chapter is to provide an introduction to Bayesian approach within a general framework and develop a Bayesian procedure for analyzing multivariate longitudinal data within the hidden Markov factor analysis framework

    Empirical likelihood for estimating equations with nonignorably missing data

    Get PDF
    We develop an empirical likelihood (EL) inference on parameters in generalized estimating equations with nonignorably missing response data. We consider an exponential tilting model for the nonignorably missing mechanism, and propose modified estimating equations by imputing missing data through a kernel regression method. We establish some asymptotic properties of the EL estimators of the unknown parameters under different scenarios. With the use of auxiliary information, the EL estimators are statistically more efficient. Simulation studies are used to assess the finite sample performance of our proposed EL estimators. We apply our EL estimators to investigate a data set on earnings obtained from the New York Social Indicators Survey

    Bayesian sensitivity analysis of statistical models with missing data

    Get PDF
    Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures

    Model Selection Criteria for Missing-Data Problems Using the EM Algorithm

    Get PDF
    We consider novel methods for the computation of model selection criteria in missing-data problems based on the output of the EM algorithm. The methodology is very general and can be applied to numerous situations involving incomplete data within an EM framework, from covariates missing at random in arbitrary regression models to nonignorably missing longitudinal responses and/or covariates. Toward this goal, we develop a class of information criteria for missing-data problems, called ICH,Q, which yields the Akaike information criterion and the Bayesian information criterion as special cases. The computation of ICH,Q requires an analytic approximation to a complicated function, called the H-function, along with output from the EM algorithm used in obtaining maximum likelihood estimates. The approximation to the H-function leads to a large class of information criteria, called ICH̃(k),Q. Theoretical properties of ICH̃(k),Q, including consistency, are investigated in detail. To eliminate the analytic approximation to the H-function, a computationally simpler approximation to ICH,Q, called ICQ, is proposed, the computation of which depends solely on the Q-function of the EM algorithm. Advantages and disadvantages of ICH̃(k),Q and ICQ are discussed and examined in detail in the context of missing-data problems. Extensive simulations are given to demonstrate the methodology and examine the small-sample and large-sample performance of ICH̃(k),Q and ICQ in missing-data problems. An AIDS data set also is presented to illustrate the proposed methodology

    Bayesian influence analysis: a geometric approach

    Get PDF
    In this paper we develop a general framework of Bayesian influence analysis for assessing various perturbation schemes to the data, the prior and the sampling distribution for a class of statistical models. We introduce a perturbation model to characterize these various perturbation schemes. We develop a geometric framework, called the Bayesian perturbation manifold, and use its associated geometric quantities including the metric tensor and geodesic to characterize the intrinsic structure of the perturbation model. We develop intrinsic influence measures and local influence measures based on the Bayesian perturbation manifold to quantify the effect of various perturbations to statistical models. Theoretical and numerical examples are examined to highlight the broad spectrum of applications of this local influence method in a formal Bayesian analysis

    Bayesian local influence for survival models

    Get PDF
    The aim of this paper is to develop a Bayesian local influence method (Zhu et al. 2009, submitted) for assessing minor perturbations to the prior, the sampling distribution, and individual observations in survival analysis. We introduce a perturbation model to characterize simultaneous (or individual) perturbations to the data, the prior distribution, and the sampling distribution. We construct a Bayesian perturbation manifold to the perturbation model and calculate its associated geometric quantities including the metric tensor to characterize the intrinsic structure of the perturbation model (or perturbation scheme). We develop local influence measures based on several objective functions to quantify the degree of various perturbations to statistical models. We carry out several simulation studies and analyze two real data sets to illustrate our Bayesian local influence method in detecting influential observations, and for characterizing the sensitivity to the prior distribution and hazard function

    Bayesian Influence Measures for Joint Models for Longitudinal and Survival Data

    Get PDF
    This article develops a variety of influence measures for carrying out perturbation (or sensitivity) analysis to joint models of longitudinal and survival data (JMLS) in Bayesian analysis. A perturbation model is introduced to characterize individual and global perturbations to the three components of a Bayesian model, including the data points, the prior distribution, and the sampling distribution. Local influence measures are proposed to quantify the degree of these perturbations to the JMLS. The proposed methods allow the detection of outliers or influential observations and the assessment of the sensitivity of inferences to various unverifiable assumptions on the Bayesian analysis of JMLS. Simulation studies and a real data set are used to highlight the broad spectrum of applications for our Bayesian influence methods

    Bayesian Case Influence Measures for Statistical Models With Missing Data

    Get PDF
    We examine three Bayesian case influence measures including the φ-divergence, Cook's posterior mode distance and Cook's posterior mean distance for identifying a set of influential observations for a variety of statistical models with missing data including models for longitudinal data and latent variable models in the absence/presence of missing data. Since it can be computationally prohibitive to compute these Bayesian case influence measures in models with missing data, we derive simple first-order approximations to the three Bayesian case influence measures by using the Laplace approximation formula and examine the applications of these approximations to the identification of influential sets. All of the computations for the first-order approximations can be easily done using Markov chain Monte Carlo samples from the posterior distribution based on the full data. Simulated data and an AIDS dataset are analyzed to illustrate the methodology

    Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior: Semiparametric nonlinear DFA models with the DP prior

    Get PDF
    Parameters in time series and other dynamic models often show complex range restrictions and their distributions may deviate substantially from multivariate normal or other standard parametric distributions. We use the truncated Dirichlet process (DP) as a non-parametric prior for such dynamic parameters in a novel nonlinear Bayesian dynamic factor analysis model. This is equivalent to specifying the prior distribution to be a mixture distribution composed of an unknown number of discrete point masses (or clusters). The stick-breaking prior and the blocked Gibbs sampler are used to enable efficient simulation of posterior samples. Using a series of empirical and simulation examples, we illustrate the flexibility of the proposed approach in approximating distributions of very diverse shapes
    • …
    corecore