16,253 research outputs found
A connection-level call admission control using genetic algorithm for MultiClass multimedia services in wireless networks
Call admission control in a wireless cell in a personal communication system (PCS) can be modeled as an M/M/C/C queuing system with m classes of users. Semi-Markov Decision Process (SMDP) can be used to optimize channel utilization with upper bounds on handoff blocking probabilities as Quality of Service constraints. However, this method is too time-consuming and therefore it fails when state space and action space are large. In this paper, we apply a genetic algorithm approach to address the situation when the SMDP approach fails. We code call admission control decisions as binary strings, where a value of “1” in the position i (i=1,…m) of a decision string stands for the decision of accepting a call in class-i; a value of “0” in the position i of the decision string stands for the decision of rejecting a call in class-i. The coded binary strings are feed into the genetic algorithm, and the resulting binary strings are founded to be near optimal call admission control decisions. Simulation results from the genetic algorithm are compared with the optimal solutions obtained from linear programming for the SMDP approach. The results reveal that the genetic algorithm approximates the optimal approach very well with less complexity
Probing microplasticity in small scale FCC crystals via Dynamic Mechanical Analysis
In small-scale metallic systems, collective dislocation activity has been
correlated with size effects in strength and with a step-like plastic response
under uniaxial compression and tension. Yielding and plastic flow in these
samples is often accompanied by the emergence of multiple dislocation
avalanches. Dislocations might be active pre-yield, but their activity
typically cannot be discerned because of the inherent instrumental noise in
detecting equipment. We apply Alternate Current (AC) load perturbations via
Dynamic Mechanical Analysis (DMA) during quasi-static uniaxial compression
experiments on single crystalline Cu nano-pillars with diameters of 500 nm, and
compute dynamic moduli at frequencies 0.1, 0.3, 1, and 10 Hz under
progressively higher static loads until yielding. By tracking the collective
aspects of the oscillatory stress-strain-time series in multiple samples, we
observe an evolving dissipative component of the dislocation network response
that signifies the transition from elastic behavior to dislocation avalanches
in the globally pre-yield regime. We postulate that microplasticity, which is
associated with the combination of dislocation avalanches and slow viscoplastic
relaxations, is the cause of the dependency of dynamic modulus on the driving
rate and the quasi-static stress. We construct a continuum mesoscopic
dislocation dynamics model to compute the frequency response of stress over
strain and obtain a consistent agreement with experimental observations. The
results of our experiments and simulations present a pathway to discern and
quantify correlated dislocation activity in the pre-yield regime of deforming
crystals.Comment: 5 pages, 3 figure
Response of arum lily calli to culture filtrate of Pectobacterium carotovorum subsp. carotovorum
This report demonstrated that culture filtrate of Pectobacterium carotovorum ssp. carotovorum isolate ZT0505, the pathogen of bacterial soft rot disease of arum lily (Zantedeschia sp.), contained extracellular enzymes and caused arum lily leaf tissue and callus maceration. Arum lily leaf tissue and callus sensitivity to culture filtrate coincided with the host susceptibility to the pathogen. The rates of survival of callus pieces were determined after exposure for various times to culture filtrate. Survival of callus pieces (%) increased with reduction of exposure time from 20 to 14 h and from 14 to 8 h. One out of 30 callus pieces was still viable after 3 cycles of 8 h exposure. Subsequently, the surviving cells in this callus pieces proliferated and differentiated into shoots. Based on this initial work, the callus screening using culture filtrate as selection agent may be useful for in vitro selection of soft rot resistant germplasm in arum lily
Performance of Photosensors in the PandaX-I Experiment
We report the long term performance of the photosensors, 143 one-inch
R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the
first phase of the PandaX dual-phase xenon dark matter experiment. This is the
first time that a significant number of R11410 photomultiplier tubes were
operated in liquid xenon for an extended period, providing important guidance
to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers'
comment
- …